[1]唐伟,张成玲,马居奎,等.基于基因组预测和分析甘薯间座壳菌(Diaporthe batatas)分泌蛋白中效应因子[J].江苏农业学报,2023,(03):665-673.[doi:doi:10.3969/j.issn.1000-4440.2023.03.006]
 TANG Wei,ZHANG Cheng-ling,MA Ju-kui,et al.Genome-wide prediction and analysis of the effector protein of Diaporthe batatas[J].,2023,(03):665-673.[doi:doi:10.3969/j.issn.1000-4440.2023.03.006]
点击复制

基于基因组预测和分析甘薯间座壳菌(Diaporthe batatas)分泌蛋白中效应因子()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年03期
页码:
665-673
栏目:
植物保护
出版日期:
2023-06-30

文章信息/Info

Title:
Genome-wide prediction and analysis of the effector protein of Diaporthe batatas
作者:
唐伟1张成玲1马居奎1杨冬静1陈晶伟1高方园1谢逸萍1王芳2孙厚俊1
(1.江苏徐淮地区徐州农业科学研究所/农业农村部甘薯生物学与遗传育种重点实验室,江苏徐州221131;2.宁波市农业科学研究院,浙江宁波315100)
Author(s):
TANG Wei1ZHANG Cheng-ling1MA Ju-kui1YANG Dong-jing1CHEN Jing-wei1GAO Fang-yuan1XIE Yi-ping1WANG Fang2SUN Hou-jun1
(1.Xuzhou Institute of Agricultural Sciences in Xuhuai Area/Key Laboratory of Biology and Genetic Improvement of Sweetpotato of Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China;2.Ningbo Academy of Agricultural Sciences, Ningbo 315100, China)
关键词:
甘薯间座壳菌分泌蛋白效应因子基因功能分析实时荧光定量PCR(qRT-PCR)
Keywords:
Diaporthe batatassecreted proteineffectorgene functional analysisquantitative real-time PCR (qRT-PCR)
分类号:
S531
DOI:
doi:10.3969/j.issn.1000-4440.2023.03.006
文献标志码:
A
摘要:
甘薯间座壳菌(Diaporthe batatas)是引起甘薯基腐病的病原菌之一,近年来在中国东南沿海发生较为普遍。由于效应因子在致病过程中发挥着重要作用,本研究采用SignalP 5.0、GPI-SOM、WoLF PSORT、TMHMM-2.0和EffectorP 3.0等生物信息学软件,对甘薯间座壳菌效应因子进行预测和分析。结果表明,从D. batatas全基因组编码的13 864个蛋白质中筛选到359个候选效应因子,其中248个为质外体效应因子,68个为胞内效应因子,43个既可能是质外体效应因子又可能是胞内效应因子。在信号肽分析中,所有候选效应因子信号肽长度为14~37个氨基酸,在信号肽切割位点-3位到+2位出现频率最高的氨基酸分别为丙氨酸、丝氨酸、丙氨酸、丙氨酸、脯氨酸。利用HMMER、DIAMOND和eCAMI 3个软件对359个候选效应因子进行碳水化合物活性酶(CAZyme)类分析,结果表明,有89个蛋白质属于CAZyme,其中糖苷水解酶类最多。eggNOG-mapper分析结果显示,在359个候选效应因子中有227个具有功能注释,主要涉及碳水化合物转运和代谢,翻译后修饰、蛋白质周转、分子伴侣等生理过程。通过qRT-PCR检测9个候选效应因子基因在D. batatas侵染过程中的相对表达水平,发现有7个候选效应因子基因在侵染过程中显著上调,有2个没有显著变化。这些结果的获得为明确甘薯间座壳菌效应因子的功能,分析甘薯基腐病发病机理,筛选寄主抗性基因及研发特异性靶向农药提供了参考。
Abstract:
Diaporthe batatas is one of pathogens causing sweet potato foot rot disease, which is common in the southeast coastal areas of China in recent years. As the effectors played an important role in the pathogenesis, SignalP 5.0, GPI-SOM, WoLF PSORT, TMHMM-2.0, EffectorP 3.0 and other bioinformatic softwares were used to predict and analyze the effectors of D. batatas. The results showed that a total of 359 candidate effectors were screened from the 13 864 proteins in the whole genome of D. batatas. Among these effectors, 248 effectors were apoplastic effectors, 68 effectors were cytoplasmic effectors and 43 effectors were dual-localized (apoplastic/cytoplasmic). The result of signal peptides analysis showed that the lengths of signal peptides were 14-37 amino acids, and the amino acids with the highest frequency at the position -3-+2 of signal peptides cleavage site were alanine, serine, alanine, alanine, proline, respectively. The 89 candidate effectors were predicted and analyzed to be the carbohydrate-active enzyme (CAZyme) through the HMMER, DIAMOND and eCAMI softwares, and most of them belonged to glycoside hydrolase (GH). A total of 227 candidate effectors were functionally annotated among the 359 candidate effectors using eggNOG-mapper, mainly involving carbohydrate transport and metabolism, posttranslational modification, protein turnover, chaperones and other physiological and biochemical processes. The relative expression levels of nine effectors were tested by qRT-PCR. The results showed that seven of them significantly increased at different infection stages, while two of them showed no significant change. These results provide a reference for clarifying the function of the effector, analyzing the pathogenesis of sweet potato foot rot disease, screening new resistant gene and developing specific targeted pesticides.

参考文献/References:

[1]GOMES R, GLIENKE C, VIDEIRA S, et al. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi[J]. Persoonia-Molecular Phylogeny and Evolution of Fungi, 2013, 31(1):1-41.
[2]黄立飞,刘伟明,刘也楠,等. 甘薯茎基部腐烂病调查及病原鉴定[J]. 中国农学通报, 2019,35(18):135-141.
[3]余继华. 一种重要的甘薯新病害——甘薯基腐病[J]. 植物检疫, 2018,32(6):57-60.
[4]谢昀烨,王会福,应俊杰,等. 浙江甘薯蔓枯病病原菌鉴定[J]. 植物病理学报, 2021,51(3):441-445.
[5]刘奕君,吴明琼,廖咏梅. 广西3种甘薯薯块真菌性病害的病原鉴定[J]. 广西植保, 2017,30(3):5-9.
[6]HARTER L L. Foot rot a new disease of the sweet potato[J]. Phytopathology, 1913, 3:243-245.
[7]黃巧雯,庄明富,曾显雄,等. 由 Phomopsis destruens引起之甘薯基腐病[J]. 植物病理学会刊, 2012(21):47-52.
[8]MAEDA A, MINOSHIMA A, KAWANO S, et al. Foot rot disease of sweet potato in Japan caused by Diaporthe destruens: first report, pathogenicity and taxonomy[J]. Journal of General Plant Pathology, 2022, 88:33-40.
[9]LEE Y J, MANNAA M, JEONG J J, et al. First report of dry rot of sweetpotato (Ipomoea batatas) caused by Diaporthe batatas in Korea[J]. Plant Disease, 2016, 100(8). DOI:10.1094/pdis-02-16-0249-pdn.
[10]PRESTI L L, LANVER D, SCHWEIZER G, et al. Fungal effectors and plant susceptibility[J]. Annual Review of Plant Biology, 2015, 66(1):513-545.
[11]TARIQJAVEED M, MATEEN A, WANG S, et al. Versatile effectors of phytopathogenic fungi target host immunity[J]. Journal of Integrative Plant Biology, 2021, 63(11):1856-1873.
[12]HOGENHOUT S A, VAN DER HOORN R A, TERAUCHI R, et al. Emerging concepts in effector biology of plant-associated organisms[J]. Molecular Plant-microbe Interactions, 2009, 22(2):115-122.
[13]GIRALDO M C, DAGDAS Y F, GUPTA Y K, et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae[J]. Nature Communications, 2013, 4(1):1-12.
[14]WIT P J G M D, RAHIM M, HARROLD A, et al. Fungal effector proteins: past, present and future[J]. Molecular Plant Pathology, 2009, 10(6):735-747.
[15]MIN X J. Evaluation of computational methods for secreted protein prediction in different eukaryotes[J]. Journal of Proteomics & Bioinformatics, 2010, 3(5) :143-147.
[16]SPERSCHNEIDER J, WILLIAMS A H, HANE J K, et al. Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors[J]. Frontiers in Plant Science, 2015, 6. DOI:10.3389/fpls.2015.01168.
[17]刘爱平,吴洁,王玉婷,等. 基于宏基因组测序的四川麸醋醋醅微生物组和风味形成相关基因分析[J].江苏农业学报,2022,38(3):806-812.
[18]于淑婷,万群,余向阳,等. 邻苯二甲酸酯降解真菌的筛选及其降解特性和土壤修复作用[J].江苏农业学报,2021,37(3):660-666.
[19]何艳秋,颜瑞,蒙姑,等. 香蕉枯萎病菌1号小种分泌蛋白与效应子的预测与分析[J]. 植物病理学报, 2020,50(2):129-140.
[20]范春霞,王军节,赵鲁迺克,等. 甜瓜粉霉病菌效应蛋白编码基因的预测与分析[J]. 植物病理学报, 2020,50(5):549-560.
[21]YANG Y L, YAO X, ZHANG X X, et al. Draft genome sequence of Diaporthe batatatis causing dry rot disease in sweetpotato[J]. Plant Disease, 2022, 106(2):737-740.
[22]ALMAGRO ARMENTEROS J J, TSIRIGOS K D, SNDERBY C K, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks[J]. Nature Biotechnology, 2019, 37(4):420-423.
[23]FANKHAUSER N,MSER P. Identification of GPI anchor attachment signals by a Kohonen self-organizing map[J]. Bioinformatics, 2005, 21(9):1846-1852.
[24]HORTON P, PARK K J, OBAYASHI T, et al. WoLF PSORT: protein localization predictor[J]. Nucleic Acids Research, 2007, 35(S2):585-587.
[25]KROGH A, LARSSON B, VON HEIJNE G, et al. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes [J]. Journal of Molecular Biology, 2001, 305(3):567-580.
[26]SPERSCHNEIDER J, DODDS P. EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes[J]. Molecular Plant-Microbe Interactions, 2022, 35(2): 146-156.
[27]HUERTA-CEPAS J, FORSLUND K, COELHO L P, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper[J]. Molecular Biology and Evolution, 2017, 34(8):2115-2122.
[28]ZHANG H, YOHE T, HUANG L, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation[J]. Nucleic Acids Research, 2018, 46(1). DOI:10.1093/nar/gky418.
[29]SONAH H, DESHMUKH R K, BLANGER R R. Computational prediction of effector proteins in fungi: opportunities and challenges[J]. Frontiers in Plant Science, 2016, 7. DOI:10.3389/fpls.2016.00126.
[30]JONES D A B, BERTAZZONI S, TURO C J, et al. Bioinformatic prediction of plant-pathogenicity effector proteins of fungi[J]. Current Opinion in Microbiology, 2018, 46:43-49.
[31]董章勇,陈欣瑜,舒永馨,等. 茄子枯萎病菌致病效应因子的预测分析[J]. 西南农业学报, 2019,32(6):1285-1289.
[32]ZHAO S, SHANG X, BI W, et al. Genome-wide identification of effector candidates with conserved motifs from the wheat leaf rust fungus Puccinia triticina[J]. Frontiers in Microbiology, 2020, 11. DOI: 10.3389/fmicb.2020.01188.
[33]连小雨,王妍,路妍,等. 向日葵柄锈菌效应蛋白的预测及筛选[J]. 中国油料作物学报, 2021,43(6):1141-1149.
[34]KUBICEK C P, STARR T L, GLASS N L. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi[J]. Annual Review of Phytopathology, 2014, 52:427-451.
[35]SPROCKETT D D, PIONTKIVSKA H, BLACKWOOD C B. Evolutionary analysis of glycosyl hydrolase family 28 (GH28) suggests lineage-specific expansions in necrotrophic fungal pathogens[J]. Gene, 2011, 479(1):29-36.
[36]ROY A, JAYAPRAKASH A, RAJESWARY T R, et al. Genome-wide annotation, comparison and functional genomics of carbohydrate-active enzymes in legumes infecting Fusarium oxysporum formae speciales[J]. Mycology, 2020, 11(1):56-70.
[37]DALY P, VAN MUNSTER J M, BLYTHE M J, et al. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments[J]. Biotechnology for Biofuels, 2017, 10. DOI:10.1186/s13068-017-0700-9.
[38]LIU T, SONG T, ZHANG X, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis[J]. Nature Communications, 2014, 5(1):1-10.
[39]TERFRCHTE M, REINDL M, JANKOWSKI S, et al. Applying unconventional secretion in Ustilago maydis for the export of functional nanobodies[J]. International Journal of Molecular Sciences, 2017, 18(5). DOI:10.3390/ijms18050937.

相似文献/References:

[1]聂燕芳,黄嘉瑶,周玲菀,等.香蕉枯萎病菌热带4号小种基因组规模分泌蛋白的预测与分析[J].江苏农业学报,2017,(02):288.[doi:doi:10.3969/j.issn.1000-4440.2017.02.008]
 NIE Yan-fang,HUANG Jia-yao,ZHOU Lin-wan,et al.Genome-scale prediction and analysis of the secretory proteins of Fusarium oxysporum f. sp. cubense tropical race 4[J].,2017,(03):288.[doi:doi:10.3969/j.issn.1000-4440.2017.02.008]
[2]祝友朋,韩长志,熊智.核桃细菌性黑斑病菌分泌蛋白质的理化性质及特征分析[J].江苏农业学报,2019,(02):295.[doi:doi:10.3969/j.issn.1000-4440.2019.02.008]
 ZHU You-peng,HAN Chang-zhi,XIONG Zhi.Physicochemical properties and characteristic analysis of secretory proteins in walnut bacterial black spot pathogen[J].,2019,(03):295.[doi:doi:10.3969/j.issn.1000-4440.2019.02.008]

备注/Memo

备注/Memo:
收稿日期:2022-05-06 基金项目:国家甘薯产业技术体系项目(CARS-10)作者简介:唐伟(1989-),男,山东泰安人,硕士,助理研究员,主要从事甘薯病虫害防治研究。(E-mail)tangv0001@163.com 通讯作者:孙厚俊,(E-mail)sunhoujun1980@163.com
更新日期/Last Update: 2023-07-11