参考文献/References:
[1]GOMES R, GLIENKE C, VIDEIRA S, et al. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi[J]. Persoonia-Molecular Phylogeny and Evolution of Fungi, 2013, 31(1):1-41.
[2]黄立飞,刘伟明,刘也楠,等. 甘薯茎基部腐烂病调查及病原鉴定[J]. 中国农学通报, 2019,35(18):135-141.
[3]余继华. 一种重要的甘薯新病害——甘薯基腐病[J]. 植物检疫, 2018,32(6):57-60.
[4]谢昀烨,王会福,应俊杰,等. 浙江甘薯蔓枯病病原菌鉴定[J]. 植物病理学报, 2021,51(3):441-445.
[5]刘奕君,吴明琼,廖咏梅. 广西3种甘薯薯块真菌性病害的病原鉴定[J]. 广西植保, 2017,30(3):5-9.
[6]HARTER L L. Foot rot a new disease of the sweet potato[J]. Phytopathology, 1913, 3:243-245.
[7]黃巧雯,庄明富,曾显雄,等. 由 Phomopsis destruens引起之甘薯基腐病[J]. 植物病理学会刊, 2012(21):47-52.
[8]MAEDA A, MINOSHIMA A, KAWANO S, et al. Foot rot disease of sweet potato in Japan caused by Diaporthe destruens: first report, pathogenicity and taxonomy[J]. Journal of General Plant Pathology, 2022, 88:33-40.
[9]LEE Y J, MANNAA M, JEONG J J, et al. First report of dry rot of sweetpotato (Ipomoea batatas) caused by Diaporthe batatas in Korea[J]. Plant Disease, 2016, 100(8). DOI:10.1094/pdis-02-16-0249-pdn.
[10]PRESTI L L, LANVER D, SCHWEIZER G, et al. Fungal effectors and plant susceptibility[J]. Annual Review of Plant Biology, 2015, 66(1):513-545.
[11]TARIQJAVEED M, MATEEN A, WANG S, et al. Versatile effectors of phytopathogenic fungi target host immunity[J]. Journal of Integrative Plant Biology, 2021, 63(11):1856-1873.
[12]HOGENHOUT S A, VAN DER HOORN R A, TERAUCHI R, et al. Emerging concepts in effector biology of plant-associated organisms[J]. Molecular Plant-microbe Interactions, 2009, 22(2):115-122.
[13]GIRALDO M C, DAGDAS Y F, GUPTA Y K, et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae[J]. Nature Communications, 2013, 4(1):1-12.
[14]WIT P J G M D, RAHIM M, HARROLD A, et al. Fungal effector proteins: past, present and future[J]. Molecular Plant Pathology, 2009, 10(6):735-747.
[15]MIN X J. Evaluation of computational methods for secreted protein prediction in different eukaryotes[J]. Journal of Proteomics & Bioinformatics, 2010, 3(5) :143-147.
[16]SPERSCHNEIDER J, WILLIAMS A H, HANE J K, et al. Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors[J]. Frontiers in Plant Science, 2015, 6. DOI:10.3389/fpls.2015.01168.
[17]刘爱平,吴洁,王玉婷,等. 基于宏基因组测序的四川麸醋醋醅微生物组和风味形成相关基因分析[J].江苏农业学报,2022,38(3):806-812.
[18]于淑婷,万群,余向阳,等. 邻苯二甲酸酯降解真菌的筛选及其降解特性和土壤修复作用[J].江苏农业学报,2021,37(3):660-666.
[19]何艳秋,颜瑞,蒙姑,等. 香蕉枯萎病菌1号小种分泌蛋白与效应子的预测与分析[J]. 植物病理学报, 2020,50(2):129-140.
[20]范春霞,王军节,赵鲁迺克,等. 甜瓜粉霉病菌效应蛋白编码基因的预测与分析[J]. 植物病理学报, 2020,50(5):549-560.
[21]YANG Y L, YAO X, ZHANG X X, et al. Draft genome sequence of Diaporthe batatatis causing dry rot disease in sweetpotato[J]. Plant Disease, 2022, 106(2):737-740.
[22]ALMAGRO ARMENTEROS J J, TSIRIGOS K D, SNDERBY C K, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks[J]. Nature Biotechnology, 2019, 37(4):420-423.
[23]FANKHAUSER N,MSER P. Identification of GPI anchor attachment signals by a Kohonen self-organizing map[J]. Bioinformatics, 2005, 21(9):1846-1852.
[24]HORTON P, PARK K J, OBAYASHI T, et al. WoLF PSORT: protein localization predictor[J]. Nucleic Acids Research, 2007, 35(S2):585-587.
[25]KROGH A, LARSSON B, VON HEIJNE G, et al. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes [J]. Journal of Molecular Biology, 2001, 305(3):567-580.
[26]SPERSCHNEIDER J, DODDS P. EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes[J]. Molecular Plant-Microbe Interactions, 2022, 35(2): 146-156.
[27]HUERTA-CEPAS J, FORSLUND K, COELHO L P, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper[J]. Molecular Biology and Evolution, 2017, 34(8):2115-2122.
[28]ZHANG H, YOHE T, HUANG L, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation[J]. Nucleic Acids Research, 2018, 46(1). DOI:10.1093/nar/gky418.
[29]SONAH H, DESHMUKH R K, BLANGER R R. Computational prediction of effector proteins in fungi: opportunities and challenges[J]. Frontiers in Plant Science, 2016, 7. DOI:10.3389/fpls.2016.00126.
[30]JONES D A B, BERTAZZONI S, TURO C J, et al. Bioinformatic prediction of plant-pathogenicity effector proteins of fungi[J]. Current Opinion in Microbiology, 2018, 46:43-49.
[31]董章勇,陈欣瑜,舒永馨,等. 茄子枯萎病菌致病效应因子的预测分析[J]. 西南农业学报, 2019,32(6):1285-1289.
[32]ZHAO S, SHANG X, BI W, et al. Genome-wide identification of effector candidates with conserved motifs from the wheat leaf rust fungus Puccinia triticina[J]. Frontiers in Microbiology, 2020, 11. DOI: 10.3389/fmicb.2020.01188.
[33]连小雨,王妍,路妍,等. 向日葵柄锈菌效应蛋白的预测及筛选[J]. 中国油料作物学报, 2021,43(6):1141-1149.
[34]KUBICEK C P, STARR T L, GLASS N L. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi[J]. Annual Review of Phytopathology, 2014, 52:427-451.
[35]SPROCKETT D D, PIONTKIVSKA H, BLACKWOOD C B. Evolutionary analysis of glycosyl hydrolase family 28 (GH28) suggests lineage-specific expansions in necrotrophic fungal pathogens[J]. Gene, 2011, 479(1):29-36.
[36]ROY A, JAYAPRAKASH A, RAJESWARY T R, et al. Genome-wide annotation, comparison and functional genomics of carbohydrate-active enzymes in legumes infecting Fusarium oxysporum formae speciales[J]. Mycology, 2020, 11(1):56-70.
[37]DALY P, VAN MUNSTER J M, BLYTHE M J, et al. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments[J]. Biotechnology for Biofuels, 2017, 10. DOI:10.1186/s13068-017-0700-9.
[38]LIU T, SONG T, ZHANG X, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis[J]. Nature Communications, 2014, 5(1):1-10.
[39]TERFRCHTE M, REINDL M, JANKOWSKI S, et al. Applying unconventional secretion in Ustilago maydis for the export of functional nanobodies[J]. International Journal of Molecular Sciences, 2017, 18(5). DOI:10.3390/ijms18050937.