[1]高鹏,王广达,魏兆根,等.水稻热激转录因子家族基因对纹枯病病菌和植物激素的响应特征[J].江苏农业学报,2023,(03):609-621.[doi:doi:10.3969/j.issn.1000-4440.2023.03.001]
 GAO Peng,WANG Guang-da,WEI Zhao-gen,et al.Response characteristics of rice heat shock factors family genes to Rhizoctonia solani and plant hormones[J].,2023,(03):609-621.[doi:doi:10.3969/j.issn.1000-4440.2023.03.001]
点击复制

水稻热激转录因子家族基因对纹枯病病菌和植物激素的响应特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年03期
页码:
609-621
栏目:
遗传育种·生理生化
出版日期:
2023-06-30

文章信息/Info

Title:
Response characteristics of rice heat shock factors family genes to Rhizoctonia solani and plant hormones
作者:
高鹏1王广达2魏兆根1叶元妹1冯志明12赵剑华1居冉1谢文亚12陈宗祥12胡珂鸣12左示敏12
(1.扬州大学农学院/江苏省作物基因组学和分子育种重点实验室/植物功能基因组学教育部重点实验室,江苏扬州225009;2.扬州大学/江苏省粮食作物现代产业技术协同创新中心/江苏省作物遗传生理重点实验室,江苏扬州225009)
Author(s):
GAO Peng1WANG Guang-da2WEI Zhao-gen1YE Yuan-mei1FENG Zhi-ming12ZHAO Jian-hua1JU Ran1XIE Wen-ya12CHEN Zong-xiang12HU Ke-ming12ZUO Shi-min12
(1.Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of Ministry of Education/College of Agriculture, Yangzhou University, Yangzhou 225009, China;2.Jiangsu Collaborative Innovation Center for Modern Industrial Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology/Yangzhou University, Yangzhou 225009, China)
关键词:
水稻OsHsf基因纹枯病防御相关激素
Keywords:
riceOsHsf genesheath blightdefense-related hormone
分类号:
S435.111.4+2
DOI:
doi:10.3969/j.issn.1000-4440.2023.03.001
文献标志码:
A
摘要:
解析水稻热激转录因子(Heat shock factors, Hsf)家族基因响应纹枯病病菌侵染和4种植物激素处理的表达特征,可为进一步解析Hsf调控水稻纹枯病抗性与对相关逆境的响应提供重要依据。利用生物信息学方法搜索并鉴定到25个水稻Hsf基因,对其系统进化树、相关分子特征、蛋白质结构域、基因结构及顺式作用元件进行预测和分析,用荧光定量PCR法分析它们对纹枯病病菌侵染的响应特征及4种激素[茉莉酸(Jasmonic acid,JA)、水杨酸(Salicylic acid,SA)、乙烯(Ethylene,ETH)和激动素(Kinetin,KT)]处理后的表达模式,同时分析它们在水稻组织中的表达情况。结果显示,水稻Hsf蛋白总体上可划分为5组,3个OsHsf亚家族基因在进化关系上的距离较远。25个Hsf蛋白的相对分子质量大小不一,且多数蛋白质的稳定性不高,但其基因结构较为保守。这些基因可能与激素响应及光信号通路相关。有5个基因呈组成型表达,另有7个基因呈组织特异性表达。水稻Hsf基因总体上受纹枯病病菌诱导的强度较低,其中11个上调表达的基因主要集中在OsHsfA、OsHsfB亚家族,4个下调表达的基因主要集中在OsHsfC亚家族, 提示Hsf基因可能在调控水稻对纹枯病抗性的功能上存在分化。4个基因(OsHsfA2a、OsHsfA3、OsHsfB2a、OsHsfB2c)强烈响应纹枯病病菌的侵染,并且在叶鞘、叶片组织中的相对表达量较高,表明这些基因可能参与调控水稻对纹枯病的抗性。多数Hsf基因能够响应4种植物激素处理,总体来说,大部分OsHsf基因在JA、SA和ETH处理下呈下调表达,仅有少数基因呈上调表达;JA处理与SA处理相比,有1个Hsf基因受诱导表达的特征相反,SA处理和ETH处理相比,有3个Hsf基因受诱导表达的特征相反,JA处理和ETH处理相比,有3个Hsf基因受诱导表达的特征相反,JA处理与SA处理相比,SA处理与ETH处理相比,JA处理与ETH处理相比,表达特征相似的基因分别有18个、16个和13个。OsHsfA2a、OsHsfA3、OsHsfB2a、OsHsfB2c等4个水稻的Hsf基因可能参与调控水稻对纹枯病的抗性,研究结果明确了水稻中Hsf基因对不同激素处理的响应特征,为进一步研究Hsf在水稻逆境响应中的功能提供了参考依据。
Abstract:
Characterization of the expression of rice heat shock factors (Hsf) family genes in response to the infection of Rhizoctonia solani and the treatment of four plant hormones can provide an important basis for further analysis of the regulation of sheath blight resistance and related stress response by Hsf. Twenty-five rice Hsf genes were identified by searching using bioinformatics methods, and their phylogenetic tree, molecular characteristics, protein domains, gene structure and cis-acting elements were predicted and analyzed, while the response characteristics to the infection of R. solani and the expression patterns of four plant hormones (jasmonic acid: JA, salicylic acid: SA, ethylene: ETH, kinetin: KT) after treatment, and the expression patterns in different tissues in rice were analyzed through qPCR. Overall, the rice Hsf proteins could be classified into five groups. The three OsHsf subfamily genes were evolutionarily distant from each other. The 25 Hsf proteins had different molecular weights and most of them were unstable, but their gene structures were relatively conserved. These genes might be associated with hormone response as well as light signaling pathways. Five genes were constitutively expressed and seven genes were tissue-specific. In general, rice Hsf genes were less induced by R. solani, with 11 up-regulated genes mainly in the OsHsfA and OsHsfB subfamiliy and four down-regulated genes mainly in the OsHsfC subfamily, suggesting a possible divergence in the evolution of Hsf genes in regulating resistance to sheath blight. Four genes (OsHsfA2a, OsHsfA3, OsHsfB2a and OsHsfB2c) were highly expressed mainly in leaves and leaf sheaths while strongly responding to sheath blight, suggesting that these genes might be involved in regulating resistance to sheath blight. Most Hsf genes were able to respond to the treatments of four plant hormones, and overall, most OsHsf genes showed down-regulated expression in JA, SA and ETH treatments, and only a few showed up-regulated expression. There were one, three and three Hsf with opposite induced expression characteristics in JA and SA, SA and ETH, and JA and ETH treatments, respectively, and 18, 16 and 13 were similarly expressed, respectively. Four rice Hsf genes, including OsHsfA2a, OsHsfA3, OsHsfB2a, OsHsfB2c, might be involved in regulating the resistance to rice sheath blight and the response characteristics of Hsf genes in rice to different plant hormones were clarified, which provided a reference for further studies on the function of Hsf in rice stress response.

参考文献/References:

[1]NAKASHIMA K, TAKASAKI H, MIZOI J, et al. NAC transcription factors in plant abiotic stress responses[J]. Biochim Biophys Acta, 2012, 1819(2): 97-103.
[2]PIRKKALA L, NYKANEN P, SISTONEN L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond[J]. FASEB J, 2001, 15(7): 1118-1131.
[3]ZHOU R G, LI B, LIU H T, et al. Progress in the participation of Ca2+-calmodulin in heat shock signal transduction[J]. Progress in Natural Science, 2009, 19(10): 1201-1208.
[4]LATA C, PRASAD M. Role of DREBs in regulation of abiotic stress responses in plants[J]. J Exp Bot, 2011, 62(14): 4731-4748.
[5]NOVER L, BHARTI K, DRING P, et al. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?[J]. Cell Stress Chaperones, 2001, 6(3): 177-189.
[6]MORIMOTO R I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging[J]. Genes Dev, 2008, 22(11): 1427-1438.
[7]SCHARF K D, ROSE S, ZOTT W, et al. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF[J]. EMBO J, 1990, 9(13): 4495-4501.
[8]ZHOU M, ZHENG S G, LIU R, et al. Genome-wide identification, phylogenetic and expression analysis of the heat shock transcription factor family in bread wheat (Triticum aestivum L.)[J]. BMC Genomics, 2019, 20(1): 505.
[9]LIN Y X, JIANG H Y, CHU Z X, et al. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize[J]. BMC Genomics, 2011, 12: 76.
[10]CHAUHAN H, KHURANA N, AGARWAL P, et al. Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress[J]. Mol Genet Genomics, 2011, 286(2): 171-187.
[11]SCHARF K D, BERBERICH T, EBERSBERGER I, et al. The plant heat stress transcription factor (Hsf) family: structure, function and evolution[J]. Biochim Biophys Acta, 2012, 1819(2): 104-119.
[12]LIU H C, CHARNG Y Y. Acquired thermotolerance independent of heat shock factor A1 (HsfA1), the master regulator of the heat stress response[J]. Plant Signal Behav, 2012, 7(5): 547-550.
[13]YOSHIDA T, OHAMA N, NAKAJIMA J, et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression[J]. Mol Genet Genomics, 2011, 286(5/6): 321-332.
[14]MITTAL D, ENOKI Y, LAVANIA D, et al. Binding affinities and interactions among different heat shock element types and heat shock factors in rice (Oryza sativa L.)[J]. FEBS J, 2011, 278(17): 3076-3085.
[15]CHARNG Y Y, LIU H C, LIU N Y, et al. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiol, 2007, 143(1): 251-262.
[16]ZHU M D, ZHANG M, GAO D J, et al. Rice OsHSFA3 gene improves drought tolerance by modulating polyamine biosynthesis depending on abscisic acid and ROS levels[J]. International Journal of Molecular Sciences, 2020, 21(5):1857.
[17]CHEN H, HWANG J E, LIM C J, et al. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response[J]. Biochem Biophys Res Commun, 2010, 401(2): 238-244.
[18]BANIWAL S K, CHAN K Y, SCHARF K D, et al. Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4[J]. J Biol Chem, 2007, 282(6): 3605-3613.
[19]HWANG S M, KIM D W, WOO M S, et al. Functional characterization of Arabidopsis HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions[J]. Plant Cell Environ, 2014, 37(5): 1202-1222.
[20]KUMAR M, BUSCH W, BIRKE H, et al. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis[J]. Mol Plant, 2009, 2(1): 152-165.
[21]MISHRA S K, TRIPP J, WINKELHAUS S, et al. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato[J]. Genes Dev, 2002, 16(12): 1555-1567.
[22]BECHTOLD U, ALBIHLAL W S, LAWSON T, et al. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection[J]. J Exp Bot, 2013, 64(11): 3467-3481.
[23]IKEDA M, MITSUDA N, OHME-TAKAGI M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance[J]. Plant Physiol, 2011, 157(3): 1243-1254.
[24]ZHOU J, XU X C, CAO J J, et al. Heat shock factor HsfA1a is essential for R gene-mediated nematode resistance and triggers H2O2 production[J]. Plant Physiol, 2018, 176(3): 2456-2471.
[25]PERNAS M, RYAN E, DOLAN L. SCHIZORIZA controls tissue system complexity in plants[J]. Curr Biol, 2010, 20(9): 818-823.
[26]BEGUM T, REUTER R, SCHOFFL F. Overexpression of AtHsfB4 induces specific effects on root development of Arabidopsis[J]. Mech Dev, 2013, 130(1): 54-60.
[27]WUNDERLICH M, GROSS-HARDT R, SCHOFFL F. Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA[J]. Plant Mol Biol, 2014, 85(6): 541-550.
[28]ZINSMEISTER J, BERRIRI S, BASSO D P, et al. The seed-specific heat shock factor A9 regulates the depth of dormancy in Medicago truncatula seeds via ABA signalling[J]. Plant Cell Environ, 2020, 43(10): 2508-2522.
[29]MITTAL D, CHAKRABARTI S, SARKAR A, et al. Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses[J]. Plant Physiol Biochem, 2009, 47(9): 785-795.
[30]YANG W, JU Y H, ZUO L P, et al. OsHsfB4d binds the promoter and regulates the expression of OsHsp18.0-CI to resistant against Xanthomonas oryzae[J]. Rice, 2020, 13(1): 28.
[31]SHIM D, HWANG J U, LEE J, et al. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice[J]. Plant Cell, 2009, 21(12): 4031-4043.
[32]SINGH A, MITTAL D, LAVANIA D, et al. OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L.)[J]. Cell Stress Chaperones, 2012, 17(2): 243-254.
[33]LIU A L, ZOU J, LIU C F, et al. Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice[J]. BMB Rep, 2013, 46(1): 31-36.
[34]WU Y S, YANG C Y. Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress[J]. Bot Stud, 2019, 60(1): 23.
[35]XIANG J H, RAN J, ZOU J, et al. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice[J]. Plant Cell Rep, 2013, 32(11): 1795-1806.
[36]左示敏,张亚芳,陈宗祥,等. 水稻抗纹枯病遗传育种研究进展[J]. 中国科学(生命科学), 2010, 40(11): 1014-1023.
[37]李明友,王嘉楠,王广达,等. 抗纹枯病数量性状基因qSB-11HJX及qSB-9TQ改良粳稻品种的抗性研究[J]. 扬州大学学报(农业与生命科学版), 2018, 40(6): 1-7.
[38]YANG D L, YANG Y N, HE Z H. Roles of plant hormones and their interplay in rice immunity[J]. Mol Plant, 2013, 6(3): 675-685.
[39]DE VLEESSCHAUWER D, SEIFI H S, FILIPE O, et al. The DELLA protein SLR1 integrates and amplifies salicylic acid- and jasmonic acid-dependent innate immunity in rice[J]. Plant Physiology, 2016, 170(3): 1831-1847.
[40]HE Y Q, ZHANG H H, SUN Z T, et al. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to rice black streaked dwarf virus infection in rice[J]. New Phytol, 2017, 214(1): 388-399.
[41]章慧敏,冯志明,王雨,等. 水稻MAPK家族基因对纹枯病菌和激素的响应特征研究[J]. 扬州大学学报(农业与生命科学版), 2018, 39(4): 72-78.
[42]PENG X X, HU Y J, TANG X K, et al. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice[J]. Planta, 2012, 236(5): 1485-1498.
[43]PENG X, WANG H, JANG J C, et al. OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani[J]. Rice, 2016, 9(1): 63.
[44]HELLIWELL E E, WANG Q, YANG Y N. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani[J]. Plant Biotechnol J, 2013, 11(1): 33-42.
[45]KOUZAI Y, KIMURA M, WATANABE M, et al. Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon[J]. New Phytol, 2018, 217(2): 771-783.
[46]XUE X, CAO Z X, ZHANG X T, et al. Overexpression of OsOSM1 enhances resistance to rice sheath blight[J]. Plant Dis, 2016, 100(8): 1634-1642.
[47]薛芗,冯志明,曹文磊,等. 乙烯信号参与调控水稻纹枯病抗性的研究[J]. 植物病理学报, 2020, 50(4): 462-470.
[48]TAHERI P, TARIGHI S. A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani[J]. J Plant Physiol, 2011, 168(10): 1114-1122.
[49]TAHERI P, TARIGHI S. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway[J]. J Plant Physiol, 2010, 167(3): 201-208.
[50]贺闽,尹俊杰,冯志明,等. 水稻稻瘟病和纹枯病抗性鉴定方法[J]. 植物学报, 2020, 55(5): 48-58.
[51]冯志明,王广达,赵剑华,等. 水稻富含半胱氨酸类受体激酶家族基因对纹枯病菌和植物激素的响应特征分析[J]. 中国水稻科学, 2021, 35(5): 439-448.
[52]YANG Y X, AHAMMED G J, WU C J, et al. Crosstalk among Jasmonate, Salicylate and Ethylene signaling pathways in plant disease and immune responses[J]. Current Protein and Peptide Science, 2015, 16(5): 450-461.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(03):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(03):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(03):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(03):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(03):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(03):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(03):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(03):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(03):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(03):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]

备注/Memo

备注/Memo:
收稿日期:2023-02-01 基金项目:国家自然科学基金项目(31872858、32000362);江苏省政府种业振兴项目[JBGS(2021)001];江苏省研究生科研创新计划资助项目(KYCX20_2985);扬州大学“青蓝工程”项目作者简介:高鹏(1994-),男,江苏常州人,博士研究生,研究方向为水稻抗纹枯病分子育种。(E-mail)yzugaopeng@163.com。王广达为共同第一作者。通讯作者:左示敏,(E-mail)smzuo@yzu.edu.cn;胡珂鸣,(E-mail)hukm@yzu.edu.cn
更新日期/Last Update: 2023-07-11