[1]徐德聪,王宇,沈章军,等.不同生境剑叶金鸡菊瘦果和种子的特性[J].江苏农业学报,2023,(02):530-538.[doi:doi:10.3969/j.issn.1000-4440.2023.02.027]
 XU De-cong,WANG Yu,SHEN Zhang-jun,et al.Characteristics of achenes and seeds of Coreopsis lanceolata under different habitats[J].,2023,(02):530-538.[doi:doi:10.3969/j.issn.1000-4440.2023.02.027]
点击复制

不同生境剑叶金鸡菊瘦果和种子的特性()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年02期
页码:
530-538
栏目:
园艺
出版日期:
2023-04-30

文章信息/Info

Title:
Characteristics of achenes and seeds of Coreopsis lanceolata under different habitats
作者:
徐德聪王宇沈章军陈延松
(合肥师范学院生命科学学院,安徽合肥230601)
Author(s):
XU De-congWANG YuSHEN Zhang-junCHEN Yan-song
(School of Life Sciences, Hefei Normal University, Hefei 230601, China)
关键词:
生境剑叶金鸡菊瘦果种子微形态形态品质
Keywords:
habitatsCoreopsis lanceolataacheneseedmicromorphologymorphologyquality
分类号:
S682.1
DOI:
doi:10.3969/j.issn.1000-4440.2023.02.027
文献标志码:
A
摘要:
为探讨不同生境对剑叶金鸡菊(Coreopsis lanceolata L.)的瘦果、种子特性的影响,揭示其环境适应机制,本研究采集了安徽省铜陵市郊区山坡上(生境Ⅰ)、铜陵市杨山冲尾矿库区(生境Ⅱ)和尾矿库覆土复垦区(生境Ⅲ)3种不同生境下的剑叶金鸡菊成熟瘦果,测定其长、宽、厚、千粒质量、密度、含水率等形态、品质指标以及重金属、钙和总磷的含量,利用生物体视显微镜、扫描电子显微镜观察其外观形态和内部构造。结果表明,不同生境剑叶金鸡菊瘦果和种子有相似的形态构造,可区分于其他种,但附属结构及种子表面微形态存在差异。不同生境剑叶金鸡菊瘦果的长、宽、体积和千粒质量均表现为生境Ⅰ和生境Ⅱ显著大于生境Ⅲ(P<0.05),生境Ⅰ与生境Ⅱ之间无显著差异(P>0.05),瘦果含水率表现为生境Ⅰ显著大于生境Ⅲ,生境Ⅲ显著大于生境Ⅱ。不同生境剑叶金鸡菊瘦果的厚和密度均无显著差异。主成分分析结果表明,3个生境分为不同的区域,进一步证明不同生境间瘦果形态和品质出现了差异。瘦果对重金属的积累并没有随着基质中重金属含量的增加而增加,但矿区生境瘦果中钙、总磷含量均显著高于山坡生境。相关性分析结果表明,基质中Cu、Zn含量均与瘦果长、宽、体积和千粒质量呈显著或极显著负相关,瘦果含水率与基质营养成分、重金属含量均有显著相关性,总的来说,过高的重金属含量会使瘦果变小、变轻,含水率下降。由此,可以初步判断剑叶金鸡菊主要通过瘦果大小和含水率等繁殖策略的改变及对重金属采取避性途径来响应尾矿库区重金属含量高、营养贫乏及持水能力差等基质条件,具有较强的环境适应能力。
Abstract:
To explore the effects of different habitats on achenes and seeds characteristics of Coreopsis lanceolata and reveal its environmental adaptation mechanism, the mature achenes of C. lanceolata were collected from three different habitats including slopes (I), Yangshanchong copper mine tailings pond (Ⅱ) and its soil covering reclamation area (Ⅲ) in Tongling. The morphological and quality indices of the achenes including the length, width, thickness, thousand-grain weight, specific gravity, and water content were determined. The contents of heavy metals, calcium and total phosphorus in the achenes were also measured. The microscopic morphology and internal structure of achenes and seeds of C. lanceolata were observed by biological stereoscopic microscope and scanning electron microscope (SEM). The results showed that the achenes and seeds collected from different habitats had similar morphological structures and could be distinguished from other species, whereas the accessory structure of achenes and the surface micromorphology of seeds were different among three habitats. The length, width, volume and thousand-grain weight of achenes collected from habitats Ⅰ and Ⅱ were both significantly higher than those of achenes collected from habitat Ⅲ (P<0.05), but there was no significant difference between habitats Ⅰ and Ⅱ. The water content of achenes in habitat Ⅰ was significantly higher than that in habitat Ⅲ, while this index in habitat Ⅲ was significantly higher than that in habitat Ⅱ. There were no significant differences in thickness and specific gravity of achenes among three habitats. The results of principal component analysis showed that the three habitats were divided into three groups, it was further proved that the morphology and quality of achenes were different among the three habitats. The accumulation of heavy metals in achenes did not show the same increasing trend as that in substrates, meanwhile the contents of calcium and total phosphorus in achenes in habitats Ⅱ and Ⅲ were significantly higher than those in habitat Ⅰ. The correlation analysis results showed that there were significantly and extremely significantly(P<0.01) negative correlations of the length, width, volume and thousand-grain weight of achenes with the contents of Cu and Zn in substrates, and the water content of achenes showed significant relationship with the contents of nutrient and heavy metals in substrates. They indicated that higher heavy metals contents in substrates could cause smaller, lighter, and lower water contents of achenes. In conclusion, C. lanceolata had a strong environmental adaptability in mine tailings, in that they could change reproductive strategies including achene size and water content, and keep their achenes free from heavy metals in response to substrate conditions including high heavy metals contents, poor nutrition, and poor water holding capacity.

参考文献/References:

[1]IBRAHIMPOUR S, KHAVANINZADEH A R, TAGHIZADEHMEHRJARDI R, et al. Dustrelated impacts of mining operations on rangeland vegetation and soil: a case study in Yazd province, Iran[J]. Environmental Earth Sciences, 2021, 80(14): 467.
[2]JAHROMI M A, JAMSHIDI-ZANJANI A, DARBAN A K. Heavy metal pollution and human health risk assessment for exposure to surface soil of mining area: a comprehensive study[J]. Environmental Earth Sciences, 2020, 79(14): 365.
[3]MODOI O C, ROBA C, TOROK Z, et al. Environmental risks due to heavy metal pollution of water resulted from mining wastes in NW Romania[J]. Environmental Engineering and Management Journal, 2014, 13(9): 2325-2336.
[4]GONZLEZ-VALDEZ E, ALARCN A, FERRERA-CERRATO R, et al. Seed germination and seedling growth of five plant species for assessing potential strategies to stabilizing or recovering metals from mine tailings[J].Water, Air, & Soil Pollution, 2016, 227(1): 24.
[5]LUO Z T, TANG C B, HAO Y H, et al. Solidification/stabilization of heavy metals and its efficiency in lead-zinc tailings using different chemical agents[J]. Environmental Technology, 2022, 43 (11): 1613-1623.
[6]NEJAD Z D, KIM J W, JUNG M C. Reclamation of arsenic contaminated soils around mining site using solidification/stabilization combined with revegetation[J]. Geosciences Journal, 2017, 21(3): 385-396.
[7]CROSS A T, IVANOV D, STEVENS J C, et al. Nitrogen limitation and calcifuge plant strategies constrain the establishment of native vegetation on magnetite mine tailings[J]. Plant and Soil, 2021, 461(1/2):181-201.
[8]FREITAS H, PRASAD M N V, PRATAS J. Plant community tolerant to trace elements growing on the degraded soils of So Domingos mine in the south east of Portugal: environmental implications[J]. Environmental International, 2004, 30 (1): 65-72.
[9]RAMOS S J, CALDEIRA C F, GASTAUER M, et al. Native leguminous plants for mineland revegetation in the eastern Amazon: seed characteristics and germination[J]. New Forests, 2019, 50(5):859-872.
[10]NEDUNURI K V, LOWELL C, MEADE W, et al. Management practices and phytoremediation by native grasses[J].International Journal of Phytoremediation,2010,12(2):200-214.
[11]CARVALHO M E A, GAZIOLA S A, CARVALHO L A, et al. Cadmium effects on plant reproductive organs: physiological, productive, evolutionary and ecological aspects[J]. Annals of Applied Biology, 2021,178(2):227-243.
[12]WANG Y P, WANG J F, GUO S G, et al. CRISPR/Cas9-mediated mutagenesis of C1BG1 decreased seed size and promoted seed germination in watermelon[J]. Horticulture Research, 2021,8:70.
[13]MURAWSKA-WLODARCZYK K, KORZENIAK U, CHLEBICKI A, et al. Metalliferous habitats and seed microbes affect the seed morphology and reproductive strategy of Arabidopsis halleri[J]. Plant and Soil, 2022,472(1/2):175-192.
[14]SNCHEZ-LPEZ A S, THIJS S, BECKERS B, et al. Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues[J]. Plant and Soil, 2018, 422(1/2):51-66.
[15]徐德聪,孙庆业,沈章军,等. 铜尾矿库剑叶金鸡菊根际尾矿和植株的重金属元素含量及相关性分析[J]. 植物资源与环境学报, 2018, 27(1): 27-36.
[16]许媛,孙进,王军,等. 剑叶金鸡菊对植物群落结构的影响[J]. 海洋湖沼通报, 2009(2): 73-78.
[17]SAITO T I, OKUBO K. Influences of invasive herb Coreopsis lanceolata on riparian endemic herbs in relation to the understory light availability[J]. Landscape and Ecological Engineering, 2013, 9(2): 271-280.
[18]刘长江,林祁,贺建秀. 中国植物种子形态学研究方法和术语[J]. 西北植物学报, 2004, 24(1): 178-188.
[19]王利丽,杨珂,郭雨轩,等. 果实种子类药材微形态的鉴别研究[J]. 电子显微学报,2020, 39(3):313-322.
[20]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1979:365.
[21]XU D C, SHEN Z J, DOU C M, et al. Effects of soil properties on heavy metal bioavailability and accumulation in crop grains under different farmland use patterns[J]. Scientifc Reports, 2022,12(1): 9211-9226.
[22]杜珍珠. 石河子绿洲—荒漠区菊科植物及种子形态学研究[D]. 石河子:石河子大学,2013.
[23]DRESLER S, BEDNAREK W, HAWRYLAK-NOWAK B, et al. Morphometric and phytochemical profile of seeds of metallicolous and nonmetallicolous Echium vulgare populations[J]. Biochemical Systematics and Ecology, 2017, 70:304-310.
[24]BABST-KOSTECKA A, PRZYBYOWICZ W J, VAN DER ENT A, et al. Endosperm prevents toxic amounts of Zn from accumulating in the seed embryo-an adaptation to metalliferous sites in metal- tolerant Biscutella laevigata[J]. Metallomics,2020, 12(1):42-53.
[25]PAN G, ZHANG H, LIU P, et al. Effects of manganese stress on phenology and biomass allocation in Xanthium strumarium from metalliferous and non-metalliferous sites[J]. Ecotoxicology and Environmental Safety, 2019, 172:308-316.
[26]JIMNEZ-AMBRIZ G, PETIT C, BOURRI I, et al. Life history variation in the heavy metal tolerant plant Thlaspi caerulescens growing in a network of contaminated and noncontaminated sites in southern France: role of gene flow, selection and phenotypic plasticity[J]. New Phytologist, 2007, 173:199-215.
[27]BABST-KOSTECKA A, PRZYBYOWICZ W J, SEGET B, et al. Zinc allocation to and within Arabidopsis halleri seeds: diferent strategies of metal homeostasis in accessions under divergent selection pressure[J]. Plant-Environment Interactions. 2020, 1(3):207-220.
[28]BOTHE H, SOMKA A. Divergent biology of facultative heavy metal plants[J]. Journal of Plant Physiology, 2017, 219: 45-61.
[29]蒋廷惠,占新华,徐阳春,等. 钙对植物抗逆能力的影响及其生态学意义[J]. 应用生态学报, 2005, 16(5):971-976.
[30]TURNAU K, OSTACHOWICZ B, WOJTCZAK G, et al. Metal uptake by xerothermic plants introduced into Zn-Pb industrial wastes[J]. Plant Soil, 2010, 337(1/2):299-311.
[31]PROBST A, LIU H Y, FANJUL M, et al. Response of Vicia faba L. to metal toxicity on mine tailing substrate: geochemical and morphological changes in leaf and root[J]. Environment and Experimentl Botany, 2009,66(2):297-308.
[32]TODESCHINI V, LINGUA G, D’AGOSTINO G, et al. Effects of high zinc concentration on poplar leaves: a morphological and biochemical study[J]. Environment and Experimentl Botany, 2011,71(1): 50-56.
[33]刘登彪,郑骏宇,赵涛,等. 不同供磷水平对四种超富集植物生长及吸收重金属的影响[J]. 环境科学学报, 2015, 35(4):1198-1204.
[34]钟军弟,陈燕,刘锴栋,等. 不同生境下假臭草的种子特性分析[J]. 江苏农业科学, 2017, 45(9): 87-91.
[35]张文标,金则新. 夏蜡梅果实和种子形态变异及其与环境因子相关性[J]. 浙江大学学报(理学版), 2007, 34(6):689-695.
[36]BALEKOGLU S, CALISKAN S, DIRIK H. Effects of geoclimatic factors on the variability in Pinus pinea cone, seed, and seedling traits in Turkey native habitats[J]. Ecological Processes, 2020, 9:55.
[37]周元祥. 安徽铜陵典型尾矿库地球化学和环境地球化学效应[D]. 合肥:合肥工业大学, 2009.

备注/Memo

备注/Memo:
收稿日期:2022-06-12 基金项目:安徽省高校自然科学研究项目(KJ2020A0094、KJ2019ZD50);安徽省教育厅高校优秀拔尖人才培育项目(gxbjZD2021073);合肥师范学院研究生导师专项科研项目(DSKY27) 作者简介:徐德聪(1974-),女,安徽舒城人,博士,教授,主要从事植物生理生态学和土壤重金属污染控制机理与工程研究。(E-mail)2521411088@qq.com
更新日期/Last Update: 2023-05-12