[1]赵振宁,孙浩田,宋雨茹,等.山楂属植物叶绿体基因组特征与密码子偏好性分析[J].江苏农业学报,2023,(02):504-517.[doi:doi:10.3969/j.issn.1000-4440.2023.02.024]
 ZHAO Zhen-ning,SUN Hao-tian,SONG Yu-ru,et al.Chloroplast genome characteristics and codon usage bias analysis of Crataegus L.[J].,2023,(02):504-517.[doi:doi:10.3969/j.issn.1000-4440.2023.02.024]
点击复制

山楂属植物叶绿体基因组特征与密码子偏好性分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年02期
页码:
504-517
栏目:
园艺
出版日期:
2023-04-30

文章信息/Info

Title:
Chloroplast genome characteristics and codon usage bias analysis of Crataegus L.
作者:
赵振宁1孙浩田2宋雨茹1余潇3
(1.西南林业大学林学院,云南昆明650224;2.西南林业大学生态与环境学院,云南昆明650224;3.湖北工程学院建筑学院,湖北孝感432000)
Author(s):
ZHAO Zhen-ning1SUN Hao-tian2SONG Yu-ru1YU Xiao3
(1.College of Forestry, Southwest Forestry University, Kunming 650224, China;2.College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China;3.School of Architecture, Hubei Engineering University, Xiaogan 432000, China)
关键词:
山楂属叶绿体基因组密码子偏好性系统进化
Keywords:
Crataegus L.chloroplast genomecodon usage biassystem evolution
分类号:
S661.5
DOI:
doi:10.3969/j.issn.1000-4440.2023.02.024
文献标志码:
A
摘要:
为明确山楂属植物叶绿体基因组结构与编码蛋白质的基因密码子偏好性特征,本研究利用第二代高通量测序技术对云南山楂[Crataegus scabrifolia (Franch.) Rehd.]的叶绿体基因组进行测序、组装和注释,并对山楂属11个种植物的叶绿体基因组结构、遗传多样性以及密码子偏好性进行了分析。结果显示,山楂属植物的叶绿体基因组长度为159 607~159 875 bp,G+C含量为36.6%~36.7%,为标准的四分体结构,G+C含量和结构变异均保守,边界扩张收缩稳定,未发现基因组的倒置和重排现象,11个种植物的简单重复序列和离散重复序列的种类和数量存在一定的差异。综合中性绘图分析、有效密码子数分析(ENC-plot)、奇偶校验分析(PR2-plot)和对应性(COA)分析的结果,发现山楂属植物叶绿体基因组密码子使用不但受到碱基突变的影响,还受到选择压力的深刻影响。对叶绿体基因组的最优密码子进行筛选,最优密码子数量为17~20个,其中C. kansuensis、C. oresbia、C. pinnatifida的最优密码子数量最多,C. marshallii的最优密码子数量最少,分析它们的最优密码子数据发现,山楂属植物的最优密码子大多以A或U作为第三位碱基。基于CDS(蛋白质编码序列)和叶绿体全基因组构建的系统发育关系既具有一定的相似性,也存在一些差异。本研究结果为山楂属植物的系统发育研究和分子标记开发等工作提供了参考依据。
Abstract:
In order to clarify the chloroplast genome structure and codon usage bias of Crataegus, this study used the next-generation sequencing to sequence, assemble and annotate the chloroplast genome of Crataegus scabrifolia (Franch.) Rehd., and analyzed the chloroplast genome structure, genetic diversity and codon preference of 11 species of Crataegus. The results showed that the length of chloroplast genome was between 159 607 bp and 159 875 bp, the G+C content and structural variation were conservative, the G+C content was between 36.6% and 36.7%, the boundary expansion and contraction were stable, no inversion and rearrangement of the genome were found, and there were differences in the type and number of simple sequence repeats and interspersed repeated sequences. Based on the results of neutrality plot analysis, ENC-plot, PR2-plot and correspondence analysis, it was found that the chloroplast genome codon usage in Crataegus was not only affected by base mutation, but also by selective pressure. The optimal codons of the chloroplast genome were screened, and the optimal number of codons was between 17 and 20. C. kansuensis, C. oresbia, and C. pinnatifida had the largest number of optimal codons, and C. marshallii had the least number of optimal codons. The analysis of their optimal codon data revealed that the optimal codons of Crataegus mostly used A or U as the third base. The phylogenetic relationships constructed based on protein coding sequence and complete chloroplast genome had certain similarities and differences. The results of this study can provide a reference for the phylogenetic research and molecular marker development of Crataegus.

参考文献/References:

[1]费开伟.读山楂种质资源专著——《中国果树志·山楂卷》[J].园艺学报,1998 (1):103.
[2]DEKIC V, RISTIC N, DEKIC B, et al. Phenolic and flavonoid content and antioxidant evaluation of hawthorn (Crataegus monogyna Jacq.) fruits and leaves extracts[J]. Bulletin of Natural Sciences Research, 2020, 10(1): 20-25.
[3]LISTON A, WEITEMIER K A, LETELIER L, et al. Phylogeny of Crataegus (Rosaceae) based on 257 nuclear loci and chloroplast genomes: evaluating the impact of hybridization[J]. PeerJ, 2021, 9: e12418.
[4]CHEN X L, ZHOU J G, CUI Y X, et al. Identification of Ligularia herbs using the complete chloroplast genome as a super-barcode[J]. Frontiers in Pharmacology, 2021, 9: 695.
[5]LI J, LI H Y, ZHI J K, et al. Codon usage of expansin genes in Populus trichocarpa[J]. Current Bioinformatics, 2017, 12(5): 452-461.
[6]MORALES-BRIONES D F, KADEREIT G, TEFARIKIS D T, et al. Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae sl[J]. Systematic Biology, 2021, 70(2): 219-235.
[7]CHAKRABORTY S, YENGKHOM S, UDDIN A. Analysis of codon usage bias of chloroplast genes in Oryza species[J]. Planta, 2020, 252(4): 1-20.
[8]TANG D F, WEI F, CAI Z Q, et al. Analysis of codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth[J]. Development Genes and Evolution, 2021, 231(1): 1-9.
[9]王存堂,李子钰,张福娟,等.山楂属果实不同组织乙醇提取物的抗氧化成分及性能研究[J].食品与发酵工业,2021,47(16):117-122.
[10]AIERKEN A, BUCHHOLZ T, CHEN C, et al. Hypoglycemic effect of hawthorn in type II diabetes mellitus rat model[J]. Journal of the Science of Food and Agriculture, 2017, 97(13), 4557-4561.
[11]MIN Q, BAI Y T, ZHANG Y C, et al. Hawthorn leaf flavonoids protect against diabetes-induced cardiomyopathy in rats via PKC-α signaling pathway[J]. Evidence-Based Complementary and Alternative Medicine, 2017. https://doi.org/10.1155/2017/2071952.
[12]张浣悠,邓秩童,黄嘉泳,等.山楂黄酮的保健功效及提取工艺研究进展[J].食品研究与开发,2021,42(12):212-217.
[13]张枭,杜潇,孙馨宇,等.利用SSR标记构建部分山楂资源的基因身份证[J].沈阳农业大学学报,2021,52(2):153-159.
[14]WU X E, LUO D L, ZHANG Y M, et al. Comparative genomic and phylogenetic analysis of chloroplast genomes of hawthorn (Crataegus spp.) in southwest China[J]. Frontiers in Genetics, 2022, 13. https://doi.org/10.3389%2Ffgene.2022.900357.
[15]WU L W, CUI Y X, WANG Q, et al. Identification and phylogenetic analysis of five Crataegus species (Rosaceae) based on complete chloroplast genomes[J]. Planta, 2021, 254(1): 1-12.
[16]TAI T H, TANKSLEY S D. A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue[J]. Plant Molecular Biology Reporter, 1990, 8(4): 297-303.
[17]JIN J J, YU W B, YANG J B, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biology, 2020, 21(1): 1-31.
[18]WICK R R, SCHULTZ M B, ZOBEL J, et al. Bandage: interactive visualization of de novo genome assemblies[J]. Bioinformatics, 2015, 31(20): 3350-3352.
[19]SHI L C, CHEN H M, JIANG M, et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer[J]. Nucleic acids research, 2019, 47(W1): 65-73.
[20]KEARSE M, MOIR R, WILSON A, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12): 1647-1649.
[21]王瑞,欧金梅,李昕,等.基于简单重复序列标记的药用梅品种的身份证构建[J].安徽中医药大学学报,2020,39(6):62-67.
[22]BEIER S, THIEL T, MüNCH T, et al. MISA-web: a web server for microsatellite prediction[J]. Bioinformatics, 2017, 33(16): 2583-2585.
[23]KURTZ S, SCHLEIERMACHER C. REPuter: fast computation of maximal repeats in complete genomes[J]. Bioinformatics (Oxford, England), 1999, 15(5): 426-427.
[24]XIA E H, TONG W, WU Q, et al. Tea plant genomics: achievements, challenges and perspectives[J]. Horticulture research, 2020, 7. https://doi.org/10.1038/s41438-019-0225-4.
[25]梁凤萍,文祥宁,高赫一,等.菊科植物叶绿体基因组特征分析[J].基因组学与应用生物学,2018,37(12):5437-5447.
[26]DARLING A C, MAU B, BLATTNER F R, et al. Mauve: multiple alignment of conserved genomic sequence with rearrangements[J]. Genome Research, 2004, 14(7): 1394-1403.
[27]WALDVOGEL A M, PFENNINGER M. Temperature dependence of spontaneous mutation rates[J]. Genome Research, 2021, 31(9): 1582-1589.
[28]DE OLIVEIRA J L, MORALES A C, Hurst L D, et al. Inferring adaptive codon preference to understand sources of selection shaping codon usage bias[J]. Molecular Biology and Evolution, 2021,38(8):3247-3266.
[29]XING Y P, XU L, CHEN S Y, et al. Comparative analysis of complete chloroplast genomes sequences of Arctium lappa and A.tomentosum[J]. Biologia Plantarum, 2019,63(1): 565-574.
[30]DUAN H R, ZHANG Q, WANG C M, et al. Analysis of codon usage patterns of the chloroplast genome in Delphinium grandiflorum L. reveals a preference for AT-ending codons as a result of major selection constraints[J]. PeerJ, 2021, 9:e10787.
[31]KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772-780.
[32]CAPELLA-GUTIRREZ S, SILLA-MARTíNEZ J M, GABALDóN T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses[J]. Bioinformatics, 2009,25(15):1972-1973.
[33]LI W, ZHANG C P, GUO X, et al. Complete chloroplast genome of Camellia japonica genome structures, comparative and phylogenetic analysis[J]. PLoS One, 2019, 14(5): e0216645.
[34]MENSAH R A, SUN X, CHENG C, et al. Analysis of codon usage pattern of banana basic secretory protease gene[J]. Plant Diseases and Pests, 2019, 10(1): 1-9.
[35]童一涵,郑倩,杜新明,等. 多齿红山茶叶绿体基因组序列特征分析[J]. 植物资源与环境学报,2022,31(5):27-36.
[36]于丽平,孙孟涛,贺志敏,等. 川莓和峨眉悬钩子叶绿体比较基因组学及其系统发育关系分析[J].分子植物育种, 2022. http://kns.cnki.net/kcms/detail/46.1068.S.20220729.1007.004.html.
[37]田永靖. 樟科植物比较叶绿体基因组与系统发育研究[D]. 南京: 南京大学, 2021.
[38]KELLER J, ROUSSEAU-GUEUTIN M, MARTIN G E, et al. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus[J]. DNA Research, 2017, 24(4): 34.
[39]ZHANG R Z, ZHANG L, WANG W, et al. Differences in codon usage bias between photosynthesis-related genes and genetic system-related genes of chloroplast genomes in cultivated and wild solanum species[J]. International Journal of Molecular Sciences, 2018, 19(10): 3142.
[40]LIU H B, LU Y Z, LAN B L, et al. Codon usage by chloroplast gene is bias in Hemiptelea davidii[J]. Journal of Genetics, 2020, 99(1): 1-11.
[41]樊东昌,穆赢通,贾俊英,等. 乌头属药用植物叶绿体基因组密码子特征和系统发育分析[J].分子植物育种, 2022. http://kns.cnki.net/kcms/detail/46.1068.S.20220711.1339.002.html.
[42]毛立彦,黄秋伟,龙凌云,等. 7种睡莲属植物叶绿体基因组密码子偏好性分析[J].西北林学院学报,2022,37(2):98-107.

相似文献/References:

[1]包国媛,李文辛,杨鑫光,等.海甜菜线粒体和叶绿体基因组密码子使用偏好性分析[J].江苏农业学报,2023,(09):1804.[doi:doi:10.3969/j.issn.1000-4440.2023.09.002]
 BAO Guo-yuan,LI Wen-xin,YANG Xin-guang,et al.Analysis of codon usage bias in mitochondrial and chloroplast genomes of Beta vulgaris subsp.[J].,2023,(02):1804.[doi:doi:10.3969/j.issn.1000-4440.2023.09.002]

备注/Memo

备注/Memo:
收稿日期:2022-10-17 基金项目:云南省第二次国家重点保护野生植物资源调查项目(09930-216304);2021年度云南省大学生创新创业国家级项目(202110677046) 作者简介:赵振宁(2003-),男,山东泰安人,本科,主要从事植物生物信息学研究。(E-mail)zzn1529370396@163.com 通讯作者:余潇,(E-mail)yuxiao19920215@163.com
更新日期/Last Update: 2023-05-12