[1]董颐玮,朱燕云,靳红梅.生物纳米硒对杭白菜品质与抗氧化性能的影响[J].江苏农业学报,2023,(02):479-488.[doi:doi:10.3969/j.issn.1000-4440.2023.02.021]
 DONG Yi-wei,ZHU Yan-yun,JIN Hong-mei.Effects of biological nano-selenium on the quality and antioxidant properties of Hang cabbage[J].,2023,(02):479-488.[doi:doi:10.3969/j.issn.1000-4440.2023.02.021]
点击复制

生物纳米硒对杭白菜品质与抗氧化性能的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年02期
页码:
479-488
栏目:
园艺
出版日期:
2023-04-30

文章信息/Info

Title:
Effects of biological nano-selenium on the quality and antioxidant properties of Hang cabbage
作者:
董颐玮12朱燕云23靳红梅123
(1.江苏大学环境与安全工程学院,江苏镇江212013;2.江苏省农业科学院农业资源与环境研究所,江苏南京210014;3.江苏省有机固体废弃物资源化协同创新中心,江苏南京210095)
Author(s):
DONG Yi-wei12ZHU Yan-yun23JIN Hong-mei123
(1.School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;2.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;3.Jiangsu Collaborative Innovation Center for Organic Solid Waste Recycling, Nanjing 210095, China)
关键词:
生物纳米硒杭白菜品质抗氧化性能元素
Keywords:
biological nano-seleniumHang cabbagequalityantioxidant propertieselements
分类号:
S634.3
DOI:
doi:10.3969/j.issn.1000-4440.2023.02.021
文献标志码:
A
摘要:
为探究叶面喷施不同水平生物纳米硒对杭白菜生长、品质、抗氧化性能及矿物质元素含量等的影响规律,为生物纳米硒在富硒叶菜安全生产中的应用提供参考,采用大田试验,以杭白菜[Beassica pekinensis (Lour.) Rupr.]作为研究对象,以牛粪和药渣2种有机肥作为基肥,设置 4个生物纳米硒喷施水平 (0 mg/L、1.0 mg/L、2.5 mg/L和5.0 mg/L),分析对比不同水平生物纳米硒处理下杭白菜的生物量、品质、抗氧化性能以及矿质元素含量的差异。结果表明,4个水平的生物纳米硒均能显著提升杭白菜的生物量。施用中等水平生物纳米硒可显著(P<0.05)提高杭白菜VC含量、总酚含量、关键抗氧化酶活性,降低硝酸盐含量,对可溶性糖含量无显著影响。生物纳米硒可有效提升杭白菜的有机硒含量,促进地上部对氮、钙、镁和铁元素的吸收。总之,在2种基肥条件下,叶面喷施1.0~5.0 mg/L生物纳米硒均可提高杭白菜生物量,以及可食用部分的品质、抗氧化性能及钙、镁、氮含量,其中2.5 mg/L生物纳米硒处理效果最佳。
Abstract:
The effects of foliar spraying with different levels of biological nano-selenium on the growth, quality, antioxidant performance and mineral element content of Hang cabbage were investigated, in order to provide valuable information for the safe production and application of biological nano-selenium in selenium-enriched leafy vegetables. A field experiment was conducted, with Hang cabbage as the research object, two kinds of organic fertilizers, cow dung and medicinal residue as the base fertilizers, and four spraying levels (0 mg/L, 1.0 mg/L, 2.5 mg/L and 5.0 mg/L) of biological nano-selenium were set, to analyze and compare the differences in biomass, quality, antioxidant properties and mineral element content of Hang cabbage treated with different levels of biological nano-selenium. Biological nano-selenium could significantly increase the biomass of Hang cabbage. Application of medium level of biological nano-selenium could significantly(P<0.05) increase the VC content, total phenolic content, activities of key antioxidant enzymes, and reduce nitrate content in Hang cabbage, but had no significant effect on soluble sugar content. Biological nano-selenium could effectively increase the organic selenium content of Hang cabbage and promote the absorption of nitrogen, calcium, magnesium and iron in the aboveground part. Under the two basal fertilizers, foliar spraying of 1.0-5.0 mg/L biological nano-selenium can promote the biomass of Hang cabbage, as well as the quality, antioxidant properties and calcium, magnesium and nitrogen contents of edible parts, and 2.5 mg/L biological nano-selenium has the best effect.

参考文献/References:

[1]DINH Q T, WANG M K, TRAN T A T, et al. Bioavailability of selenium in soil-plant system and a regulatory approach[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(6): 443-517.
[2]LI S, BANUELOS G S, WU L, et al. The changing selenium nutritional status of Chinese residents[J]. Nutrients, 2014, 6(3): 1103-1114.
[3]SAFFARYAZDI A, LAHOUTI M, GANJEALI A, et al. Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleracea L.) plants[J]. Notulae Scientia Biologicae, 2012, 4(4): 95-100.
[4]ASLANI F, BAGHERI S, JULKAPLI N M, et al. Effects of engineered nanomaterials on plants growth: an overview[J]. Scientific World Journal, 2014,4:1-28.
[5]MORALES-ESPINOZA M C, CADENAS-PLIEGO G, PEREZ-ALVAREZ M, et al. Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress[J]. Molecules, 2019, 24(17):3030.
[6]朱燕云,孔祥平,吴娥娇,等. 耐高盐枯草芽孢杆菌XP合成球形纳米硒及其抑制草莓病原真菌生物活性[J]. 生物工程学报, 2021, 37(8): 2825-2835.
[7]EL-SAADONY M T, SAAD A M, NAJJAR A A, et al. The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress[J]. Saudi Journal of Biological Sciences, 2021, 28(8): 4461-4471.
[8]BANO I, SKALICKOVA S, SAJJAD H, et al. Uses of selenium nanoparticles in the plant production[J]. Agronomy-Basel, 2021, 11(11):2229.
[9]DOMOKOS-SZABOLCSY E, MARTON L, SZTRIK A, et al. Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum[J]. Plant Growth Regulation, 2012, 68(3): 525-531.
[10]DJANAGUIRAMAN M, BELLIRAJ N, BOSSMANN S H, et al. High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum[J]. Acs Omega, 2018, 3(3): 2479-2491.
[11]LIU J W, ZHU X F, CHEN X, et al. Defense and inhibition integrated mesoporous nanoselenium delivery system against tomato gray mold[J]. Environmental Science-Nano, 2020, 7(1): 210-227.
[12]WU M R, CONG X, LI M, et al. Effects of different exogenous selenium on Se accumulation, nutrition quality, elements uptake, and antioxidant response in the hyperaccumulation plant Cardamine violifolia [J]. Ecotoxicology and Environmental Safety, 2020, 204: 111045.
[13]LIU L, WANG L X, LYU L H, et al. Improvment of growth and quality and regulation of the antioxidant system and lipid peroxidation in chinese cabbage (Brassica pekinensis (Lour.) Rupr.) by exogenous sodium selenite[J]. Applied Ecology and Environmental Research, 2020, 18(6): 7473-7481.
[14]WU Z C, XU S J, SHI H Z, et al. Comparison of foliar silicon and selenium on cadmium absorption, compartmentation, translocation and the antioxidant system in Chinese flowering cabbage[J]. Ecotoxicology and Environmental Safety, 2018, 166: 157-164.
[15]QING X J, ZHAO X H, HU C X, et al. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp Pekinensis) leaves[J]. Ecotoxicology and Environmental Safety, 2015, 114:179-189.
[16]SANTIAGO F E M, SILVA M L S, CARDOSO A A S, et al. Biochemical basis of differential selenium tolerance in arugula (Eruca sativa Mill.) and lettuce (Lactuca sativa L.)[J]. Plant Physiology and Biochemistry, 2020, 157:328-338.
[17]ULHASSAN Z, ALI S, GILL R A, et al. Comparative orchestrating response of four oilseed rape (Brassica napus) cultivars against the selenium stress as revealed by physio-chemical, ultrastructural and molecular profiling[J]. Ecotoxicology and Environmental Safety, 2018, 161:634-647.
[18]HAJIBOLAND R, SADEGHZADEH N, BOSNIC D, et al. Selenium activates components of iron acquisition machinery in oilseed rape roots[J]. Plant and Soil, 2020, 452(1/2): 569-586.
[19]鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
[20]中华人民共和国国家卫生和计划生育委员会.食品中抗坏血酸的测定:GB 5009.86-2016 [S]. 北京: 中国标准出版社, 2017:1-9.
[21]高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
[22]国家质量监督检验检疫总局, 国家标准化管理委员会. 食品中亚硝酸盐与硝酸盐的测定:GB 5009.33-2016[S]. 北京: 中国标准出版社, 2017:409-423.
[23]李文仙,俞丹,林玲,等. Folin-Ciocalteu比色法应用于蔬菜和水果总多酚含量测定的研究[J]. 营养学报, 2011, 33(3): 302-307.
[24]国家食品药品监督管理局, 国家卫生和计划生育委员会.食品安全国家标准食品中硒的测定:GB 5009.93-2010[S]. 北京: 中国标准出版社, 2017:1-8.
[25]湖北省卫生健康委员会.食品安全地方标准富硒食品中无机硒的测定方法:DBS 42/010-2018[S]. 北京: 中国标准出版社, 2018:2-18.
[26]HOSSAIN A, SKALICKY M, BRESTIC M, et al. Selenium biofortification: roles, mechanisms, responses and prospects[J]. Molecules, 2021, 26(4): 881.
[27]WEN D. Selenium in horticultural crops[J]. Scientia Horticulturae, 2021, 289: 110411.
[28]GARZA-GARCIA J J O, HERNANDEZ-DIAZ J A, ZAMUDIO-OJEDA A, et al. The role of selenium nanoparticles in agriculture and food technology[J]. Biological Trace Element Research, 2021, 200(5): 2528-2548.
[29]WANG Z, HUANG W, PANG F. Selenium in soil-plant-microbe: A review[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 108(2): 167-181.
[30]雷红量,丛文宇,蔡照磊,等. 植物根系与叶片吸收硒的关键过程及影响因素[J]. 植物营养与肥料学报, 2021, 27(8): 1456-1467.
[31]李莉婕,赵泽英,黎瑞君,等. 水氮钾耦合对火龙果产量和品质的调控效应[J].南方农业学报,2022,53(3):859-868.
[32]王贝贝,徐旭,赵艳,等. 植物生长调节剂对花后渍水遮阴小麦籽粒淀粉合成和干物质积累的影响[J]. 江苏农业学报,2022,38(1):9-19.
[33]蒋明金,徐文波,王荣基,等. 减氮对机插杂交籼稻产量和稻米品质的影响[J]. 南方农业学报,2022,53(1):104-114.
[34]谢昶琰,王迪,安祥瑞,等. 滴灌减量施肥对梨树体养分及果实产量、品质的影响[J]. 江苏农业学报,2021,37(6):1526-1533.
[35]姚童言,黄绵松,宋亚康,等. 长期施用菇渣与化肥对潮土地区玉米和小麦产量及稳定性的影响[J]. 生物加工过程,2021,19(1):79-84.
[36]吴金芝,黄明,王志敏,等. 干旱对冬小麦旗叶光合参数、产量和水分利用效率的影响[J]. 江苏农业学报,2021,37(5):1108-1118.
[37]MOTESHAREZADEH B, ALIKHANI H A, MA Q, et al. Investigation of different selenium sources and supplying methods for selenium enrichment of basil vegetable (a case study under calcareous and non-calcareous soil systems)[J]. Recent Patents on Food, Nutrition & Agriculture, 2021, 12(1): 73-82.
[38]QUANG T D, ZHOU F, WANG M, et al. Assessing the potential availability of selenium in the soil-plant system with manure application using diffusive gradients in thin-films technique (DGT) and DOM-Se fractions extracted by selective extractions[J]. Science of the Total Environment, 2021, 763: 143047.
[39]GOLUBKINA N A, KOSHELEVA O V, KRIVENKOV L V, et al. Intersexual differences in plant growth, yield, mineral composition and antioxidants of spinach (Spinacia oleracea L.) as affected by selenium form[J]. Scientia Horticulturae, 2017, 225: 350-358.
[40]孔凡丽,张恩萍,曹庆军,等. 硒的生理功能及在主要作物中的吸收富集[J]. 东北农业科学, 2020, 45(6): 115-118.
[41]ABDALLA M A, WICK J E, FAMUYIDE I M, et al. Selenium enrichment of green and red lettuce and the induction of radical scavenging potential[J]. Horticulturae, 2021, 7(11): 488.
[42]PANNICO A, EL-NAKHEL C, KYRIACOU M C, et al. Combating micronutrient deficiency and enhancing food functional quality through selenium fortification of select lettuce genotypes grown in a closed soilless system[J]. Frontiers in Plant Science, 2019, 20(10): 1495.
[43]黄雪梅,岳顺念,王琦瑞. 不同浓度亚硒酸钠对水培生菜富硒品质的影响[J]. 广东农业科学, 2018, 45(1): 29-33.
[44]RUIZ J M, ROMERO L. Nitrogen efficiency and metabolism in grafted melon plants[J]. Scientia Horticulturae, 1999, 81(2): 113-123.
[45]张妍妍,晋莹莹,高尚,等. 草莓果实抗坏血酸含量及相关代谢酶活性对外源硒代蛋氨酸的响应[J]. 河南科技学院学报(自然科学版), 2021, 49(1): 6-13.
[46]ULHASSAN Z, GILL R A, ALI S, et al. Dual behavior of selenium: insights into physio-biochemical, anatomical and molecular analyses of four Brassica napus cultivars[J]. Chemosphere, 2019, 225:329-341.
[47]郝松澜,刘培杰,谭启玲,等. 锌钼硒施用对小白菜的作用效果及锌钼硒含量的影响[J]. 肥料与健康, 2020, 47(6): 26-30,34.
[48]LI D, ZHOU C, ZOU N, et al. Nanoselenium foliar application enhances biosynthesis of tea leaves in metabolic cycles and associated responsive pathways[J]. Environmental Pollution, 2021, 273: 116503.
[49]DAI H, WEI S, SKUZA L, et al. Selenium spiked in soil promoted zinc accumulation of Chinese cabbage and improved its antioxidant system and lipid peroxidation[J]. Ecotoxicology and Environmental Safety, 2019, 180:179-184.
[50]陈铭,刘更另. 高等植物的硒营养及在食物链中的作用(二)[J]. 土壤通报, 1996(4): 185-188.
[51]李登超,朱祝军,徐志豪,等. 硒对小白菜生长和养分吸收的影响[J]. 植物营养与肥料学报, 2003, 9(3): 353-358.
[52]陈永波,刘淑琴,刘瑶,等. 富硒产品中硒的形态分析及化学评分模式的建立[J]. 生物资源, 2021, 43(1): 79-85.

备注/Memo

备注/Memo:
收稿日期:2022-04-22 基金项目:江苏省农业科技自主创新基金项目[CX(20)1011] 作者简介:董颐玮(1995-),男,江苏镇江人,硕士,主要从事绿色投入品污染防控。(E-mail)853847582@qq.com 通讯作者:靳红梅,(E-mail)hmjin@jaas.ac.cn
更新日期/Last Update: 2023-05-12