参考文献/References:
[1]赵利,党占海,牛俊义,等. 水分胁迫下不同抗旱类型胡麻苗期生理生化指标变化[J].干旱地区农业研究,2015,33(4):206-211.
[2]何丽,杜彦斌,张金,等. 干旱对胡麻现蕾期光合特性及产量的影响[J].西北农林科技大学学报(自然科学版),2017,45(4):59-64.
[3]李玥,牛俊义,吴兵,等. 基于APSIM的胡麻陇亚杂1号的生育时期模拟模型[J].核农学报,2015,29(5):972-979.
[4]肖浏骏,刘蕾蕾,邱小雷,等. 小麦生长模型对拔节期和孕穗期低温胁迫响应能力的比较[J].中国农业科学, 2021,54(3):504-521.
[5]康佳,李玥,康亮河. 胡麻生理生化代谢指标对干旱胁迫的响应及其模拟模型的研究[J].干旱区地理,2022,45(3):879-889.
[6]李玥,牛俊义,郭丽琢,等. AquaCrop模型在西北胡麻生物量及产量模拟中的应用和验证[J].中国生态农业学报,2014,22(1):93-103.
[7]陈先冠,冯利平,白慧卿,等. 基于小麦模型算法集成平台的三种水分胁迫算法比较[J]. 农业工程学报, 2021, 37(16):47-57.
[8]姚宁,周元刚,宋利兵,等. 不同水分胁迫条件下DSSAT-CERES-Wheat模型的调参与验证[J]. 农业工程学报, 2015, 31(12):138-150.
[9]刘健,姚宁,吝海霞,等. 冬小麦物候期对土壤水分胁迫的响应机制与模拟[J].农业工程学报,2016,32(21):115-124.
[10]CHEN Y, MAREK G W, MAREK T H, et al. Assessing soil and water assessment tool plant stress algorithms using full and deficit irrigation treatments[J]. Agronomy Journal, 2019, 111(3): 1266-1280.
[11]SASEENDRAN S A, AHUJA L R, MA L, et al. Current water deficit stress simulations in selected agricultural system models[J]. Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes, 2008, 1: 1-38.
[12]茹晓雅,李广,闫丽娟,等. 基于APSIM模型模拟水氮调控对旱地春小麦产量的影响[J].草业科学,2019,36(9):2342-2350.
[13]HOLZWORTH D P, HUTH N I, DEVOIL P G, et al. APSIM-evolution towards a new generation of agricultural systems simulation[J]. Environmental Modelling and Software,2014,62: 327-350.
[14]刘沉默. 旱作条件下APSIM模型的适应性评价及应用——以山西省为例[D].太原:山西农业大学,2019.
[15]穆青云,李俊,何亮,等. 青藏高原冬小麦生产潜力及其对气候变化的响应[J].干旱区资源与环境,2021,35(7):92-99.
[16]王一明. 干旱条件下基于WOFOST模型与遥感数据同化的玉米产量模拟改进研究[D].北京:中国科学院大学, 2018.
[17]魏玉清,沈强云,郝正刚. 基于DSSAT模型和正交试验相结合的春小麦灌溉模式优化研究[J].节水灌溉,2019(1):6-11,17.
[18]高言. 基于改进DSSAT-CERES模型的夏玉米地膜覆盖生长模拟[D].杨凌:西北农林科技大学,2021.
[19]付春晓,龚时宏,王建东,等. 改进CERES-Maize模型在玉米膜下滴灌模式下的适用性[J].排灌机械工程学报,2018,36(11):1076-1080.
[20]HE J, CAI H, BAI J. Irrigation scheduling based on CERES-Wheat model for spring wheat production in the Minqin Oasis in Northwest China[J]. Agricultural Water Management, 2013, 128: 19-31.
[21]HE D, WANG E, WANG J, et al. Uncertainty in canola phenology modelling induced by cultivar parameterization and its impact on simulated yield[J]. Agricultural and Forest Meteorology, 2017,232: 163-175.
[22]张伟欣,吴茜,孙传亮,等. 油菜株型模拟研究进展[J]. 江苏农业学报,2022,38(2):549-557.
[23]纪洪亭,赵韩伟,王勇,等. 基于数学模型的向日葵穴盘苗生长动态特征分析[J]. 江苏农业学报,2022,38(1):135-142.
[24]陈永快,黄语燕,兰婕,等. 基于辐热积的NFT栽培生菜生长模型[J]. 江苏农业科学,2021,49(19):201-204,215.
[25]刘竞择. 水分胁迫对赤霞珠葡萄不同叶龄叶片光合特性的影响[D].银川:宁夏大学,2020.
[26]李正鹏. 基于田间试验和DSSAT模型的关中冬小麦水氮管理优化[D].杨凌:西北农林科技大学,2017.
[27]PRASAD P V V, PISIPATI S R, RISTIC Z, et al. Impact of nighttime temperature on physiology and growth of spring wheat[J]. Crop Science,2008,48(6):2372-2380.
[28]HAO B, XUE Q, MAREK T H, et al. Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains[J]. Agricultural Water Management, 2015, 155: 11-21.
[29]TODOROVIC M, ALBRIZIO R, ZIVOTIC L, et al. Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes[J]. Agronomy Journal, 2009, 101(3): 509-521.
[30]ANTLE J M, BASSO B, CONANT R T, et al. Towards a new generation of agricultural system data, models and knowledge products: design and improvement[J]. Agricultural Systems, 2017, 155: 255-268.