[1]杨云,肖霞霞,陈小龙,等.一株植物内生枯草芽孢杆菌对6种邻苯二甲酸酯的共代谢降解[J].江苏农业学报,2023,(02):393-404.[doi:doi:10.3969/j.issn.1000-4440.2023.02.012]
 YANG Yun,XIAO Xia-xia,CHEN Xiao-long,et al.Co-metabolic degradation of six phthalic acid esters by an endophytic Bacillus subtilis[J].,2023,(02):393-404.[doi:doi:10.3969/j.issn.1000-4440.2023.02.012]
点击复制

一株植物内生枯草芽孢杆菌对6种邻苯二甲酸酯的共代谢降解()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年02期
页码:
393-404
栏目:
耕作栽培·资源环境
出版日期:
2023-04-30

文章信息/Info

Title:
Co-metabolic degradation of six phthalic acid esters by an endophytic Bacillus subtilis
作者:
杨云12肖霞霞12陈小龙23程金金23余向阳23王亚23马桂珍1
(1.江苏海洋大学食品科学与工程学院,江苏连云港222000;2.江苏省农业科学院农业资源与环境研究所,江苏南京210014;3.江苏大学环境与安全工程学院,江苏镇江212013)
Author(s):
YANG Yun12XIAO Xia-xia12CHEN Xiao-long23CHENG Jin-jin23YU Xiang-yang23WANG Ya23MA Gui-zhen1
(1.School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222000, China;2.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;3.School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)
关键词:
内生菌邻苯二甲酸酯共代谢降解途径
Keywords:
endophytephthalic acid estersco-metabolismdegradation pathways
分类号:
Q939.96
DOI:
doi:10.3969/j.issn.1000-4440.2023.02.012
文献标志码:
A
摘要:
从邻苯二甲酸酯(PAEs)污染的青菜(Brassica rapa var. chinensis)中筛选获得1株编号为W34的内生菌。通过生理生化特征和16S rRNA基因测序对该菌进行鉴定,并研究W34对6种PAEs的共代谢降解特性,优化共代谢降解条件,初步探索共代谢基质对W34降解代谢PAEs的影响。结果表明,内生菌W34为枯草芽孢杆菌(Bacillus subtilis),该菌能以6种PAEs为碳源生长,可同时降解邻苯二甲酸二正丁酯(DBP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二(2-乙基)己酯(DEHP)和邻苯二甲酸二正辛酯(DnOP) 6种PAEs。其中,该菌对DBP和BBP的降解能力较强,20 mg/L质量浓度下DBP和BBP的降解半衰期均小于0.33 d。添加D-纤维二糖为共代谢基质,W34对DMP、DEP、DEHP和DnOP的降解率均显著提升。吐温-80添加量、碳源种类、碳源质量浓度和接菌量对这4种PAEs的降解率均有显著影响。通过单因素试验,得到该菌的吐温-80最佳添加量为0.025%,最佳碳源为蔗糖(浓度为20 mmol/L),最佳接种菌液OD600为0.3。此外,发现菌株W34含有质粒,但其质粒上不含PAEs降解基因,该菌的PAEs降解基因位于细菌的染色体上。菌株W34的粗酶液对6种PAEs均有催化降解活性,蔗糖可显著提高菌株W34胞内酶的催化活性。
Abstract:
An endophytic bacterium was isolated from phthalic acid esters (PAEs) contaminated Brassica rapa var. chinensis, and was designated W34. The strain was identified by physiological-biochemical and 16S rRNA gene sequencing analyses, and the co-metabolic degradation characteristics of W34 on six PAEs were investigated to optimize the co-metabolic degradation conditions, so as to make preliminary exploration of the effect of co-substrate on the degradation and metabolism of PAEs by strain W34. The results indicated that, the endophytic bacterium W34 was identified as Bacillus subtilis. The strain could utilize six PAEs as carbon sources for growth and could degrade six PAEs in MSM medium at the same time, such as dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), dimethyl phthalate (DMP), diethyl phthalate (DEP), di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP). Among them, strain W34 exhibited relative higher degradation ability on DBP and BBP compared with the other four PAEs, and the degradation half-life period of DBP and BBP were all less than 0.33 d at mass concentration of 20 mg/L. The degradation rates of DMP, DEP, DEHP and DnOP by strain W34 were all significantly enhanced in MSM medium by adding D-cellobiose as co-metabolizing matrix. Besides, adding amount of Tween-80, type and mass concentration of the carbon source and inoculation dose all had significant effects on the degradation rates of the four PAEs by strain W34. According to the results of single factor experiment, the optimal adding amount of Tween-80 was 0.025%, the best carbon source was sucrose with a concentration of 20 mmol/L, and the most suitable OD600 for bacterial solution used in inoculating was 0.3. Furthermore, it was found that strain W34 contained plasmids, but its plasmids did not contain PAEs degradation gene, and the degradation gene of W34 was located on the chromosome. The crude enzyme solution of strain W34 showed catalytic and degrading activities on the six PAEs, and the addition of sucrose could significantly improve the catalytic activity of intracellular enzymes in stain W34.

参考文献/References:

[1]ZHAO H M, HU R W, HUANG H B, et al. Enhanced dissipation of DEHP in soil and simultaneously reduced bioaccumulation of DEHP in vegetable using bioaugmentation with exogenous bacteria[J]. Biology and Fertility of Soils,2017,53(6):663-675.
[2]ZHAO H M, DU H, LIN J, et al. Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil[J]. Science of the Total Environment,2016,562:170-178.
[3]WANG J, LUO Y M, TENG Y, et al. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film[J]. Environmental Pollution,2013,180:265-273.
[4]KONG S X, JI Y, LIU L, et al. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China[J]. Environmental Pollution,2012,170:161-168.
[5]HE W, QIN N, KONG X, et al. Spatio-temporal distributions and the ecological and health risks of phthalate esters (PAEs) in the surface water of a large, shallow Chinese lake[J]. Science of the Total Environment,2013,461:672-680.
[6]NIU L L, YANG X, XU C, et al. Status of phthalate esters contamination in agricultural soils across China and associated health risks[J]. Environmental Pollution,2014,195:16-23.
[7]冯宇希,涂茜颖,冯乃宪,等. 我国温室大棚邻苯二甲酸酯(PAEs)污染及综合控制技术研究进展[J].农业环境科学学报,2019,38(10):2239-2250.
[8]BAJT O, MAILHOTT G, BOLTE M. Degradation of dibutyl phthalate by homogeneous photocatalysis with Fe (Ⅲ) in aqueous solution[J]. Applied Catalysis B: Environmental,2001,33(3):239-248.
[9]CHENG J J, LIU Y A, WAN Q, et al. Degradation of dibutyl phthalate in two contrastingagricultural soils and its long-term effects on soil microbial community[J]. Science of the Total Environment,2018,640:821-829.
[10]于淑婷,万群,余向阳,等. 邻苯二甲酸酯降解真菌的筛选及其降解特性和土壤修复作用[J].江苏农业学报,2021,37(3):660-666.
[11]GU S Z, HAO Z, XU Q Q, et al. Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae[J]. Aq uatic Toxicology,2017,191:122-130.
[12]FENG N X, LIANG Q F, FENG Y X, et al. Improving yield and quality of vegetable grown in PAEs-contaminated soils by using novel bioorganic fertilizer[J]. Science of the Total Environment,2020,739:139883.
[13]ZHAO H M, DU H, HUANG C Q, et al. Bioaugmentation of exogenous strain Rhodococcus sp. 2G can efficiently mitigate di (2-ethylhexyl) phthalate contamination to vegetable cultivation[J]. Journal of Agricultural and Food Chemistry,2019,67(25):6940-6949.
[14]韩永和,何睿文,李超,等. 邻苯二甲酸酯降解细菌的多样性、降解机理及环境应用[J].生态毒理学报,2016,11(2):37-49.
[15]FENG N X, YU J, MO C H, et al. Biodegradation of di-n-butyl phthalate (DBP) by a novel endophytic Bacillus megaterium strain YJB3[J]. Science of the Total Environment,2018,616:117-127.
[16]FENG F Y, GE J, LI Y S, et al. Enhanced degradation of chlorpyrifos in rice (Oryza sativa L.) by five strains of endophytic bacteria and their plant growth promotional ability[J]. Chemosphere,2017,184:505-513.
[17]SUN K, LIU J, GAO Y, et al. Inoculating plants with the endophytic bacterium Pseudomonas sp. Ph6-gfp to reduce phenanthrene contamination[J]. Environmental Science and Pollution Research,2015,22(24):19529-19537.
[18]冯乃宪. 降解邻苯二甲酸酯的植物内生菌分离筛选及污染修复应用研究[D].广州:暨南大学, 2017.
[19]王亚,冯发运,葛静,等. 植物根系分泌物对土壤污染修复的作用及影响机理[J].生态学报,2022,42(3):829-842.
[20]张银萍,王芳,杨兴伦,等. 土壤中高环多环芳烃微生物降解的研究进展[J].微生物学通报,2010,37(2):280-288.
[21]巩宗强,李培军,王新,等. 芘在土壤中的共代谢降解研究[J].应用生态学报,2001(3):447-450.
[22]CHENG J, WAN Q, GE J, et al. Major factors dominating the fate of dibutyl phthalate in agricultural soils[J]. Ecotoxicology and Environmental Safety,2019,183:109569.
[23]FENG F Y, CHEN X L, WANG Q, et al. Use of Bacillus-siamensis-inoculated biochar to decrease uptake of dibutyl phthalate in leafy vegetables[J]. Journal of Environmental Management,2020,253:109636.
[24]徐文君. 一株降解邻苯二甲酸二丁酯的内生细菌的分离及其降解功能研究[D].青岛:青岛科技大学,2019.
[25]郭江枫,邢志林,王永琼,等. 同化和共代谢降解氯苯菌株的筛选与特性研究[J].中国环境科学,2021,41(2):902-912.
[26]KONG X, JIN D C, TAI X, et al. Bioremediation of dibutyl phthalate in a simulated agricultural ecosystem by Gordonia sp. strain QH-11 and the microbial ecological effects in soil[J]. Science of the Total Environment,2019,667:691-700.
[27]WONG J W C, FANG M, ZHAO Z, et al. Effect of surfactants on solubilization and degradation of phenanthrene under thermophilicconditions[J].Journal of Environmental Quality,2004,33(6):2015-2025.
[28]张栋. 表面活性剂对PAHs微生物界面行为的影响及调控机制[D].杭州:浙江大学,2013.
[29]SUBASHCHANDRABOSE S R, VENKATESWARLU K, NAIIDU R, et al. Biodegra dation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: over expression of amidohydrolase induced by pyrene and BaP[J]. Science of the Total Environment,2019,651:813-821.
[30]赵叶子,陈智坤,王铮,等. 拟除虫菊酯类农药的微生物降解及其机制研究进展[J]. 江苏农业科学,2021,49(17):28-38.
[31]PENG R H, XIONG A S, XUE Y, et al. Microbial biodegradation of polyaromatic hydrocarbons[J]. FEMS Microbiology Reviews,2008,32(6):927-955.
[32]EATON R W. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 1 2B[J]. Journal of Bacteriology,2001,183(12):3689-3703.

相似文献/References:

[1]严煌倩,李勇,翟丽菲,等.气相色谱-质谱法结合QuEChERS法快速检测青椒中15种邻苯二甲酸酯[J].江苏农业学报,2018,(02):459.[doi:doi:10.3969/j.issn.1000-4440.2018.02.034]
 YAN Huang-qian,LI Yong,ZHAI Li-fei,et al.Determination of 15 phthalate acid esters in pepper by gas chromatography-mass spectrometry with QuEChERS method[J].,2018,(02):459.[doi:doi:10.3969/j.issn.1000-4440.2018.02.034]
[2]付思远,彭玉林,黄水明,等.内生菌协助水稻缓解重金属胁迫和积累研究进展[J].江苏农业学报,2023,(03):859.[doi:doi:10.3969/j.issn.1000-4440.2023.03.028]
 FU Si-yuan,PENG Yu-lin,HUANG Shui-ming,et al.Research progress of endophytes in alleviating heavy metal stress and accumulation in rice[J].,2023,(02):859.[doi:doi:10.3969/j.issn.1000-4440.2023.03.028]
[3]肖霞霞,杨云,马丽雅,等.大蒜内生巨大芽孢杆菌对邻苯二甲酸酯的共代谢降解特性及代谢途径分析[J].江苏农业学报,2023,(01):106.[doi:doi:10.3969/j.issn.1000-4440.2023.01.013]
 XIAO Xia-xia,YANG Yun,MA Li-ya,et al.Co-metabolic degradation characteristics and metabolic pathways analysis of phthalic acid esters by endophytic Bacillus megaterium in garlic[J].,2023,(02):106.[doi:doi:10.3969/j.issn.1000-4440.2023.01.013]

备注/Memo

备注/Memo:
收稿日期:2022-07-15 基金项目:江苏省农业科技自主创新基金项目[CX(20)1009]; 江苏中晚熟大蒜产业集群建设项目(22912105)作者简介:杨云(1994-), 女, 江苏宿迁人, 硕士研究生, 主要从事农产品产地污染修复研究。(E-mail)1157683439@qq.com 通讯作者:马桂珍,(E-mail) guizhenma@sohu.com;王亚,(E-mail)yawang@jaas.ac.cn
更新日期/Last Update: 2023-05-12