[1]吉星,李俊,王冉,等.常见益生菌耐药性研究进展[J].江苏农业学报,2022,38(06):1722-1728.[doi:doi:10.3969/j.issn.1000-4440.2022.06.032]
 JI Xing,LI Jun,WANG Ran,et al.Research progress on drug resistance of common probiotics[J].,2022,38(06):1722-1728.[doi:doi:10.3969/j.issn.1000-4440.2022.06.032]
点击复制

常见益生菌耐药性研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年06期
页码:
1722-1728
栏目:
综述
出版日期:
2022-12-31

文章信息/Info

Title:
Research progress on drug resistance of common probiotics
作者:
吉星李俊王冉何涛
(江苏省农业科学院农产品质量安全与营养研究所/省部共建国家重点实验室培育基地——江苏省食品质量安全重点实验室,江苏南京210014)
Author(s):
JI XingLI JunWANG RanHE Tao
(Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
益生菌耐药性耐药基因转移
Keywords:
probioticsantibiotic resistancedrug resistance gene transfer
分类号:
Q939.9
DOI:
doi:10.3969/j.issn.1000-4440.2022.06.032
文献标志码:
A
摘要:
益生菌被定义为一种活的微生物,当摄入足够的量时,可在营养、新陈代谢和免疫功能等方面为宿主带来健康益处。益生菌目前被广泛应用在食品加工,医疗保健和畜禽养殖业,且市场正在扩大。益生菌的广泛使用可能带来新的风险,如成为耐药基因储存库并参与耐药基因的转移和扩散。基于公共卫生和食品安全的要求,本文对常用益生菌的种类、耐药表型测试方法、耐药特征及耐药基因转移情况进行了综述,为未来益生菌的安全规范管理和使用提供理论依据。
Abstract:
Probiotics are defined as living micro-organisms that can bring health benefits to the host in terms of nutrition, metabolism and immune function when ingested in sufficient quantities. Probiotics are widely used in food processing, health care and livestock breeding, and the market is expanding. The widespread use of probiotics may bring new risks, such as becoming a reservoir of resistance genes and participating in the transfer and diffusion of drug resistance genes. Based on the requirements of public health and food safety, this paper reviewed the types, drug-resistance test methods, drug resistance characteristics, and drug-resistance gene transfer of commonly used probiotics, so as to provide a theoretical basis for the safe and standardized management and use of probiotics in the future.

参考文献/References:

[1]ARAYA M, MORELLI L, REID G, et al. Guidelines for the evaluation of probiotics in food. Food Agriculture Organization of the United Nations and World Health Organization Working Group Report[R]. London Ontario, Canada, 2002: 1-11.
[2]AZAD M A K, SARKER M, LI T, et al. Probiotic species in the modulation of gut microbiota: An overview[J]. BioMed Research International, 2018, 2018: 9478630.
[3]MOROVIC W, BUDINOFF C R. Epigenetics: A new frontier in probiotic research[J]. Trends in Microbiology, 2021, 29(2): 117-126.
[4]GUEIMONDE M, SNCHEZ B, G DE LOS REYES-GAVILN C, et al. Antibiotic resistance in probiotic bacteria[J]. Frontiers in Microbiology, 2013, 4: 202.
[5]MACKOWIAK P A. Recycling metchnikoff: Probiotics, the intestinal microbiome and the quest for long life[J]. Frontiers in Public Health, 2013, 1: 52.
[6]TURRONI F, DURANTI S, MILANI C, et al. Bifidobacterium bifidum: A key member of the early human gut microbiota[J]. Microorganisms, 2019, 7(11): 544.
[7]EZEWSKA-FRACKOWIAK J, SEROCZYNSKA K, BANASZCZYK J, et al. The promises and risks of probiotic Bacillus species[J]. Acta Biochimica Polonica, 2018, 65(4): 509-519.
[8]BEN BRAEK O, SMAOUI S. Enterococci: Between emerging pathogens and potential probiotics[J]. BioMed Research International, 2019, 2019: 5938210.
[9]MAYRHOFER S, DOMIG K J, MAIR C, et al. Comparison of broth microdilution, Etest, and agar disk diffusion methods for antimicrobial susceptibility testing of Lactobacillus acidophilus group members[J]. Applied and Environmental Microbiology,2008,74(12):3745-3748.
[10]MUNITA J M, ARIAS C A. Mechanisms of antibiotic resistance[J]. Microbiology Spectrum, 2016, 4(2): 1-24.
[11]BLAIR J M A, WEBBER M A, BAYLAY A J, et al. Molecular mechanisms of antibiotic resistance[J]. Nature Reviews Microbiology, 2015, 13(1): 42-51.
[12]AMMOR M S, FLREZ A B, MAYO B. Antibiotic resistance in non-enterococcal lactic acid bacteria and Bifidobacteria[J]. Food Microbiology, 2007, 24(6): 559-570.
[13]FLREZ A, LADERO V, ALVAREZ-MARTN P, et al. Acquired macrolide resistance in the human intestinal strain Lactobacillus rhamnosus E41 associated with a transition mutation in 23S rRNA genes[J]. International Journal of Antimicrobial Agents, 2007, 30(4): 341-344.
[14]DELCOUR J, FERAIN T, DEGHORAIN M, et al. The biosynthesis and functionality of the cell-wall of lactic acid bacteria[J]. Antonie van Leeuwenhoek, 1999, 76: 159-184.
[15]FONTANA R, ALDEGHERI M, LIGOZZI M, et al. Overproduction of a low-affinity penicillin-binding protein and high-level ampicillin resistance in Enterococcus faecium[J]. Antimicrobial Agents and Chemotherapy,1994,38:1980-1983.
[16]COSTA Y, GALIMAND M, LECLERCQ R, et al. Characterization of the chromosomal aac(6′)-Ii gene specific for Enterococcus faecium[J]. Antimicrobial Agents and Chemotherapy, 1993, 37(9): 1896-1903.
[17]GALIMAND M, SCHMITT E, PANVERT M, et al. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM[J]. RNA, 2011, 17(2): 251-262.
[18]SINGH K V, WEINSTOCK G M, MURRAY B E. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin[J]. Antimicrobial Agents and Chemotherapy, 2002, 46(6): 1845-1850.
[19]ZERVOS M J, SCHABERG D R. Reversal of the in vitro susceptibility of Enterococci to trimethoprim-sulfamethoxazole by folinic acid[J]. Antimicrobial Agents and Chemotherapy, 1985, 28(3): 446-448.
[20]SERAFINI F, BOTTACINI F, VIAPPIANI A, et al. Insights into physiological and genetic mupirocin susceptibility in Bifidobacteria[J]. Applied and Environmental Microbiology, 2011, 77(9): 3141-3146.
[21]MAYRHOFER S, MAIR C, KNEIFEL W, et al. Susceptibility of Bifidobacteria of animal origin to selected antimicrobial agents[J]. Chemotherapy Research and Practice, 2011, 2011: 989520.
[22]KIWAKI M, SATO T. Antimicrobial susceptibility of Bifidobacterium breve strains and genetic analysis of streptomycin resistance of probiotic B. Breve strain Yakult[J]. International Journal of Food Microbiology, 2009, 134(3): 211-215.
[23]ADIMPONG D B, SORENSEN K I, THORSEN L, et al. Antimicrobial susceptibility of Bacillus strains isolated from primary starters for African traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis[J]. Applied and Environmental Microbiology, 2012, 78(22): 7903-7914.
[24]KWAK J H, CHOI E C, WEISBLUM B. Transcriptional attenuation control of ermK, a macrolide-lincosamide-streptogramin B resistance determinant from Bacillus licheniformis[J]. Journal of Bacteriology, 1991, 173(15): 4725-4735.
[25]AGERSO Y, BJERRE K, BROCKMANN E, et al. Putative antibiotic resistance genes present in extant Bacillus licheniformis and Bacillus paralicheniformis strains are probably intrinsic and part of the ancient resistome[J]. PLoS One, 2019, 14(1): e210363.
[26]GUO H, PAN L, LI L, et al. Characterization of antibiotic resistance genes from Lactobacillus isolated from traditional dairy products[J]. Journal of Food Science, 2017, 82(3): 724-730.
[27]GEVERS D, HUYS G, SWINGS J. In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria[J]. FEMS Microbiology Letters, 2003, 225(1): 125-130.
[28]CAMPEDELLI I, MATHUR H, SALVETTI E, et al. Genus-wide assessment of antibiotic resistance in Lactobacillus spp[J]. Applied and Environmental Microbiology, 2019, 85(1): e01738-18.
[29]COLAUTTI A, ARNOLDI M, COMI G, et al. Antibiotic resistance and virulence factors in lactobacilli: Something to carefully consider[J]. Food Microbiology, 2022, 103: 103934.
[30]KASTNER S, PERRETEN V, BLEULER H, et al. Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food[J]. Systematic and Applied Microbiology, 2006, 29(2): 145-155.
[31]JAIMEE G, HALAMI P M. High level aminoglycoside resistance in Enterococcus, Pediococcus and Lactobacillus species from farm animals and commercial meat products[J]. Annals of Microbiology, 2016, 66(1): 101-110.
[32]ANISIMOVA E A, YARULLINA D R. Antibiotic resistance of Lactobacillus strains[J]. Current Microbiology, 2019, 76(12): 1407-1416.
[33]HAZIROLAN G, GNDOGˇDU A, NIGIZ S, et al. Presence of OXA-48 gene in a clinical isolate of Lactobacillus rhamnosus[J]. Foodborne Pathogens and Disease, 2019, 16(12): 840-843.
[34]AQUILANTI L, GAROFALO C, OSIMANI A, et al. Isolation and molecular characterization of antibiotic-resistant lactic acid bacteria from poultry and swine meat products.[J]. Journal of Food Protection, 2007, 70(3): 557-565.
[35]DAPKEVICIUS M D L E, SGARDIOLI B, CMARA S P A, et al. Current trends of Enterococci in dairy products: A comprehensive review of their multiple roles[J]. Foods, 2021, 10(4): 821.
[36]MILLER W R, MUNITA J M, ARIAS C A. Mechanisms of antibiotic resistance in enterococci[J]. Expert Review of Anti-infective Therapy, 2014, 12(10): 1221-1236.
[37]PALMER K L, KOS V N, GILMORE M S. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance[J]. Current Opinion in Microbiology, 2010, 13(5): 632-639.
[38]WENDLANDT S, LOZANO C, KADLEC K, et al. The enterococcal ABC transporter gene lsa(E) confers combined resistance to lincosamides, pleuromutilins and streptogramin a antibiotics in methicillin-susceptible and methicillin-resistant Staphylococcus aureus[J]. The Journal of Antimicrobial Chemotherapy, 2013, 68(2): 473-475.
[39]MILLER W R, MURRAY B E, RICE L B, et al. Resistance in Vancomycin-Resistant Enterococci[J]. Infectious Disease Clinics of North America, 2020, 34(4): 751-771.
[40]LIU B, YUAN X, HE D, et al. Research progress on the oxazolidinone drug linezolid resistance[J]. European Review for Medical and Pharmacological Sciences, 2020, 24(18): 9274-9281.
[41]VAN HOEK A H A M, MAYRHOFER S, DOMIG K J, et al. Resistance determinant erm(X) is borne by transposon Tn5432 in Bifidobacterium thermophilum and Bifidobacterium animalis subsp. Lactis[J]. International Journal of Antimicrobial Agents, 2008, 31(6): 544-548.
[42]AIRES J, DOUCET-POPULAIRE F, BUTEL M J. Tetracycline resistance mediated by tet(W), tet(M), and tet(O) genes of Bifidobacterium isolates from humans[J]. Applied and Environmental Microbiology, 2007, 73(8): 2751-2754.
[43]GUEIMONDE M, FLREZ A B, VAN HOEK A H A M, et al. Genetic basis of tetracycline resistance in Bifidobacterium animalis subsp. Lactis[J]. Applied and Environmental Microbiology, 2010, 76(10): 3364-3369.
[44]AMMOR M S, FLREZ A B, ALVAREZ-MARTN P, et al. Analysis of tetracycline resistance tet(W) genes and their flanking sequences in intestinal Bifidobacterium species[J]. The Journal of Antimicrobial Chemotherapy, 2008, 62(4): 688-693.
[45]MONOD M, DENOYA C, DUBNAU D. Sequence and properties of pIM13, a macrolide-lincosamide-streptogramin B resistance plasmid from Bacillus subtilis[J]. Journal of Bacteriology, 1986, 167(1): 138-147.
[46]PHELAN R W, CLARKE C, MORRISSEY J P, et al. Tetracycline resistance-encoding plasmid from Bacillus sp. Strain, isolated from the marine sponge Haliclona simulans[J]. Applied and Environmental Microbiology, 2011, 77(1): 327-329.
[47]ROBERTS A P, PRATTEN J, WILSON M, et al. Transfer of a conjugative transposon, Tn5397 in a model oral biofilm[J]. FEMS Microbiology Letters, 1999, 177(1): 63-66.
[48]MINGMONGKOLCHAI S, PANBANGRED W. Bacillus probiotics: An alternative to antibiotics for livestock production[J]. Journal of Applied Microbiology, 2018, 124(6): 1334-1346.
[49]DAI L, WU C, WANG M, et al. First report of the multidrug resistance gene cfr and the phenicol resistance gene fexA in a Bacillus strain from swine feces[J]. Antimicrobial Agents and Chemotherapy, 2010, 54(9): 3953-3955.
[50]NAWAZ M, WANG J, ZHOU A, et al. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products[J]. Current Microbiology, 2011, 62(3): 1081-1089.
[51]THUMU S C R, HALAMI P M. Conjugal transfer of erm(B) and multiple tet genes from Lactobacillus spp. to bacterial pathogens in animal gut, in vitro and during food fermentation[J]. Food Research International, 2019, 116: 1066-1075.
[52]TOOMEY N, BOLTON D, FANNING S. Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs[J]. Research in Microbiology, 2010, 161(2): 127-135.
[53]JACOBSEN L, WILCKS A, HAMMER K, et al. Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats[J]. FEMS Microbiology Ecology, 2007, 59(1): 158-166.
[54]GEVERS D, HUYS G, SWINGS J. In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria[J]. FEMS Microbiology Letters, 2003, 225(1): 125-130.
[55]HUYS G, D′HAENE K, COLLARD J, et al. Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food[J]. Applied and Environmental Microbiology, 2004, 70(3): 1555-1562.
[56]DAI M, LU J, WANG Y, et al. In vitro development and transfer of resistance to chlortetracycline in Bacillus subtilis[J]. Journal of Microbiology, 2012, 50(5): 807-812.
[57]KAZIMIERCZAK K A, FLINT H J, SCOTT K P. Comparative analysis of sequences flanking tet(W) resistance genes in multiple species of gut bacteria[J]. Antimicrobial Agents and Chemotherapy, 2006, 50(8): 2632-2639.
[58]MATER D D G, LANGELLA P, CORTHIER G, et al. A probiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice[J]. Journal of Molecular Microbiology and Biotechnology, 2008, 14: 123-127.
[59]BOURGEOIS-NICOLAOS N, MOUBARECK C, MANGENEY N, et al. Comparative study of vanA gene transfer from Enterococcus faecium to Enterococcus faecalis and to Enterococcus faecium in the intestine of mice[J]. FEMS Microbiology Letters, 2006, 254(1): 27-33.
[60]刘韶娜,郭飞,张斌,等. 复合益生菌对超早期断奶杜藏乳仔猪肠道微生物群落结构的影响[J].南方农业学报,2021,52(3):547-558.
[61]崔莉,李莹,冯进,等. 热激联合牛蒡抗热保护剂对益生菌奶粉中益生菌喷雾干燥活性的影响[J].江苏农业科学,2021,49(10):166-169.
[62]申远航,黄晓灵,高利伟,等. 益生菌对断奶仔猪小肠形态影响的Meta分析[J].南方农业学报,2020,51(10):2546-2556.

相似文献/References:

[1]何琴,王利,段荟芹,等.枯草芽孢杆菌和粪肠球菌对鲫鱼生长性能、血清学指标和肠道微生物多样性的影响[J].江苏农业学报,2023,(01):142.[doi:doi:10.3969/j.issn.1000-4440.2023.01.017]
 HE Qin,WANG Li,DUAN Hui-qin,et al.Effects of Bacillus subtilis and Enterococcus faecalis on growth performance, serum biochemical indices and intestinal microflora of Carassius auratus[J].,2023,(06):142.[doi:doi:10.3969/j.issn.1000-4440.2023.01.017]

备注/Memo

备注/Memo:
收稿日期:2022-05-16基金项目:江苏省自然科学基金项目(BK20220746、BK20200056);江苏省农业科技自主创新基金项目[CX(22)3003]作者简介:吉星(1993-),男,河南驻马店人,博士,助理研究员,主要从事人畜共患微生物耐药和致病机制研究。(E-mail) jixing@jaas.ac.cn通讯作者:何涛,(E-mail) vethetao@163.com
更新日期/Last Update: 2023-01-13