参考文献/References:
[1]刘月姣.《中国居民营养与慢性病状况报告(2020年)》发布[J].中国食物与营养, 2020, 26(12): 2.
[2]PEREIRA D I A , IRVING S S C, LOMER M C E, et al. A rapid, simple questionnaire to assess gastrointestinal symptoms after oral ferrous sulphate supplementation[J]. BMC Gastroenterology, 2014, 14(1): 103-110.
[3]HORIMOTO Y, TAN R, LIM L. Enzymatic treatment of pork protein for the enhancement of iron bioavailability[J]. International Journal of Food Sciences and Nutrition, 2019, 70(1): 41-52.
[4]CAETANO-SILVA M E, NETTO F M, BERTOLDO-PACHECO M T, et al. Peptide-metal complexes: obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals[J]. Critical Reviews in Food Science and Nutrition, 2020, 61(1): 1-20.
[5]ZHANG Y J, DING X J, LI M Q. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans[J]. Food Chemistry, 2021, 349: 129101.
[6]WANG B, XIE N N, LI B. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: a review[J]. Journal of Food Biochemistry, 2019, 43(1): 12571.
[7]YANG J, HUANG J C, DONG X L, et al. Purifcation and identifcation of antioxidant peptides from duck plasma proteins[J]. Food Chemistry, 2020, 319: 126534.
[8]TEDESCHI C, CLEMENT V, ROUVET M, et al. Dissolution tests as a tool for predicting bioaccessibility of nutrients during digestion[J]. Food Hydrocolloid, 2009, 23(4): 1228-1235.
[9]肖怀秋,李玉珍,刘军,等. 花生肽亚铁金属配位螯合物结构解析及稳态性研究[J]. 中国酿造, 2019, 38(5): 119-122.
[10]LIN J P, CAI X X, TANG M R, et al. Preparation and evaluation of the chelating nanocomposite fabricated with marine algae Schizochytrium sp. protein hydrolysate and calcium[J]. Journal of Agricultural and Food Chemistry, 2015, 63(44): 9704-9714.
[11]ZHANG Z R, ZHOU F B, LIU X L, et al. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity[J]. Food Chemistry, 2018, 258: 269-277.
[12]龙芳. 汉麻肽钙螯合物的制备及其结构表征和稳定性[J].中国油脂, 2021, 46(9): 33-39.
[13]VO T D L, PHAM K T, LE V M V, et al. Evaluation of iron-binding capacity, amino acid composition, functional properties of Acetes japonicas proteolysate and identification of iron-binding peptides[J]. Process Biochemistry, 2020, 91: 374-386.
[14]LEE S H, SONG K B. Purification of an iron-binding nona-peptide from hydrolysates of procine blood plasma protein[J]. Process Biochemistry, 2009, 44(3): 378-381.
[15]唐顺博,涂宗财,沙小梅,等. 罗非鱼鳞胶原肽亚铁螯合物制备工艺优化及结构表征[J]. 食品与机械, 2020, 36(7): 155-160.
[16]TORRES-FUENTES C, ALAIZ M, VIOQUE J. Iron-chelating activity of chickpea protein hydrolysate peptides[J]. Food Chemistry, 2012, 134: 1585-1588.
[17]GUO L D, HARNEDY P A, LI B F, et al. Food protein-derived chelating peptides: biofunctional ingredients for dietary mineral bioavailability enhancement[J]. Trends in Food Science and Technology, 2014, 37(2): 92-105.
[18]SUN N, CUI P B, JIN Z Q, et al. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates[J]. Food Chemistry, 2017, 230:627-636.
[19]ZITKA O, RYBOLOVA M, HUBALEK J, et al. From amino acids to proteins as targets for metal-based drugs[J]. Current Drug Metabolism, 2012, 13(3): 306-320.
[20]WU W F, YANG Y Y, SUN N, et al. Food protein-derived iron-chelating peptides: the binding mode and promotive effects of iron bioavailability[J]. Food Research International, 2020, 131: 108976.
[21]BEYER R L, HOANG H N, APPLETON T G, et al. Metal clips induce folding of a short unstructured peptide into an α-helix via turn conformations in water. Kinetic versus thermodynamic products[J]. Journal of the American Chemical Society, 2004, 126(46): 15096-15105.
[22]CAI X X, LIN J P, WANG S Y. Novel peptide with specific calcium-binding capacity from Schizochytrium sp. Protein hydrolysates and calcium bioavailability in Caco-2 cells[J]. Marine Drugs, 2017, 15(1): 3.
[23]WU W M, HE L C, LIANG Y H, et al. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis[J]. Food Chemistry, 2019, 284: 80-89.
[24]WANG X, GAO A, CHEN Y, et al. Preparation of cucumber seed peptide-calcium chelate by liquid state fermentation and its characterization[J]. Food Chemistry, 2017, 229: 487-494.
[25]ZHOU J, WANG X, AI T, et al. Preparation an characterization of β-lactoglobulin hydrolysate-iron complexes[J]. Journal of Dairy Science, 2012, 95(8): 4230-4236.
[26]WANG X, GAO A, CHEN Y, et al. Preparation of cucumber seed peptide-calcium chelate by liquid state fermentation and its characterization[J]. Food Chemistry, 2017, 229: 487-494.
[27]CHEN D, MU X M, HUANG H, et al. Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats[J]. Journal of Functional Foods, 2014, 6: 575-584.
[28]PENG Z, HOU H, ZHANG K, et al. Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats[J]. Food Chemistry, 2017, 221: 373-378.