[1]杨静,石景,邹烨,等.鸡血多肽亚铁螯合物的制备工艺优化及结构表征[J].江苏农业学报,2022,38(06):1678-1685.[doi:doi:10.3969/j.issn.1000-4440.2022.06.026]
 YANG Jing,SHI Jing,ZOU Ye,et al.Preparation process optimization and structural characterization of chicken blood peptides-iron chelate[J].,2022,38(06):1678-1685.[doi:doi:10.3969/j.issn.1000-4440.2022.06.026]
点击复制

鸡血多肽亚铁螯合物的制备工艺优化及结构表征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年06期
页码:
1678-1685
栏目:
加工贮藏·质量安全
出版日期:
2022-12-31

文章信息/Info

Title:
Preparation process optimization and structural characterization of chicken blood peptides-iron chelate
作者:
杨静1石景2邹烨1杨彪1马晶晶1徐为民1王道营1
(1.江苏省农业科学院农产品加工研究所,江苏南京210014;2.南京农业大学食品科技学院,江苏南京210095)
Author(s):
YANG Jing1SHI Jing2ZOU Ye1YANG Biao1MA Jing-jing1XU Wei-min1WANG Dao-ying1
(1.Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China)
关键词:
鸡血多肽多肽亚铁螯合物结构表征
Keywords:
chicken bloodpeptidepeptide-iron chelatestructural characterization
分类号:
TS251.93
DOI:
doi:10.3969/j.issn.1000-4440.2022.06.026
文献标志码:
A
摘要:
为了提高鸡血的产品附加值,制备易被人体消化吸收的铁补充剂,在单因素试验的基础上,采用响应面试验对鸡血多肽和FeCl2·4H2O的螯合工艺进行优化,并通过紫外光谱、荧光光谱、扫描电镜、红外光谱等表征分析,比较鸡血多肽与FeCl2·4H2O螯合前后的结构变化。结果表明:最佳螯合参数为鸡血多肽与铁的质量比6.3∶1.0,螯合时间30 min,pH值5.1,在此条件下螯合率达到73.27%;紫外光谱和荧光光谱分析结果表明,螯合反应产生了区别于多肽的新型螯合物;氨基酸组成分析结果表明,鸡血多肽与亚铁螯合后,螯合物中天冬氨酸、组氨酸、谷氨酸含量显著增加;扫描电镜结果显示,鸡血多肽为表面光滑的片状结构,鸡血多肽亚铁螯合物为表面粗糙的颗粒结构;红外光谱分析结果表明,鸡血多肽中的羧基、酰胺基参与了螯合反应。
Abstract:
In order to increase the added value of chicken blood by-products and produce iron supplement that could be easily absorbed by humans, the preparation and structure change of chicken blood peptide-iron chelate was studied. Based on the single factor experiments, the response surface methodology was used to determine the optimal chelating conditions for chicken blood peptides and FeCl2·4H2O. The structural changes of chicken blood peptides before and after chelation were characterized by ultraviolet spectroscopy, fluorescence, scanning electron microscopy and infrared spectroscopy. The results showed that the optimum chelating conditions were as follows: peptide-iron mass ratio was 6.3∶1.0, the reaction time was 30 min, and the pH value was 5.1. Under these conditions, the Fe2+ chelating rate was 73.27%. The results of ultraviolet spectroscopy and fluorescence spectroscopy indicated that chicken blood peptide-iron was a new type of iron-chelated compound. The contents of amino acids were analysed. It showed that the contents of aspartic acid, glutamic acid and histidine increased significantly after chelation. The results of scanning electron microscopy showed obvious difference before and after chelation. According to infrared spectroscopy results, the carboxyl group and acylamino were invovled in chelating reaction.

参考文献/References:

[1]刘月姣.《中国居民营养与慢性病状况报告(2020年)》发布[J].中国食物与营养, 2020, 26(12): 2.
[2]PEREIRA D I A , IRVING S S C, LOMER M C E, et al. A rapid, simple questionnaire to assess gastrointestinal symptoms after oral ferrous sulphate supplementation[J]. BMC Gastroenterology, 2014, 14(1): 103-110.
[3]HORIMOTO Y, TAN R, LIM L. Enzymatic treatment of pork protein for the enhancement of iron bioavailability[J]. International Journal of Food Sciences and Nutrition, 2019, 70(1): 41-52.
[4]CAETANO-SILVA M E, NETTO F M, BERTOLDO-PACHECO M T, et al. Peptide-metal complexes: obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals[J]. Critical Reviews in Food Science and Nutrition, 2020, 61(1): 1-20.
[5]ZHANG Y J, DING X J, LI M Q. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans[J]. Food Chemistry, 2021, 349: 129101.
[6]WANG B, XIE N N, LI B. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: a review[J]. Journal of Food Biochemistry, 2019, 43(1): 12571.
[7]YANG J, HUANG J C, DONG X L, et al. Purifcation and identifcation of antioxidant peptides from duck plasma proteins[J]. Food Chemistry, 2020, 319: 126534.
[8]TEDESCHI C, CLEMENT V, ROUVET M, et al. Dissolution tests as a tool for predicting bioaccessibility of nutrients during digestion[J]. Food Hydrocolloid, 2009, 23(4): 1228-1235.
[9]肖怀秋,李玉珍,刘军,等. 花生肽亚铁金属配位螯合物结构解析及稳态性研究[J]. 中国酿造, 2019, 38(5): 119-122.
[10]LIN J P, CAI X X, TANG M R, et al. Preparation and evaluation of the chelating nanocomposite fabricated with marine algae Schizochytrium sp. protein hydrolysate and calcium[J]. Journal of Agricultural and Food Chemistry, 2015, 63(44): 9704-9714.
[11]ZHANG Z R, ZHOU F B, LIU X L, et al. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity[J]. Food Chemistry, 2018, 258: 269-277.
[12]龙芳. 汉麻肽钙螯合物的制备及其结构表征和稳定性[J].中国油脂, 2021, 46(9): 33-39.
[13]VO T D L, PHAM K T, LE V M V, et al. Evaluation of iron-binding capacity, amino acid composition, functional properties of Acetes japonicas proteolysate and identification of iron-binding peptides[J]. Process Biochemistry, 2020, 91: 374-386.
[14]LEE S H, SONG K B. Purification of an iron-binding nona-peptide from hydrolysates of procine blood plasma protein[J]. Process Biochemistry, 2009, 44(3): 378-381.
[15]唐顺博,涂宗财,沙小梅,等. 罗非鱼鳞胶原肽亚铁螯合物制备工艺优化及结构表征[J]. 食品与机械, 2020, 36(7): 155-160.
[16]TORRES-FUENTES C, ALAIZ M, VIOQUE J. Iron-chelating activity of chickpea protein hydrolysate peptides[J]. Food Chemistry, 2012, 134: 1585-1588.
[17]GUO L D, HARNEDY P A, LI B F, et al. Food protein-derived chelating peptides: biofunctional ingredients for dietary mineral bioavailability enhancement[J]. Trends in Food Science and Technology, 2014, 37(2): 92-105.
[18]SUN N, CUI P B, JIN Z Q, et al. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates[J]. Food Chemistry, 2017, 230:627-636.
[19]ZITKA O, RYBOLOVA M, HUBALEK J, et al. From amino acids to proteins as targets for metal-based drugs[J]. Current Drug Metabolism, 2012, 13(3): 306-320.
[20]WU W F, YANG Y Y, SUN N, et al. Food protein-derived iron-chelating peptides: the binding mode and promotive effects of iron bioavailability[J]. Food Research International, 2020, 131: 108976.
[21]BEYER R L, HOANG H N, APPLETON T G, et al. Metal clips induce folding of a short unstructured peptide into an α-helix via turn conformations in water. Kinetic versus thermodynamic products[J]. Journal of the American Chemical Society, 2004, 126(46): 15096-15105.
[22]CAI X X, LIN J P, WANG S Y. Novel peptide with specific calcium-binding capacity from Schizochytrium sp. Protein hydrolysates and calcium bioavailability in Caco-2 cells[J]. Marine Drugs, 2017, 15(1): 3.
[23]WU W M, HE L C, LIANG Y H, et al. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis[J]. Food Chemistry, 2019, 284: 80-89.
[24]WANG X, GAO A, CHEN Y, et al. Preparation of cucumber seed peptide-calcium chelate by liquid state fermentation and its characterization[J]. Food Chemistry, 2017, 229: 487-494.
[25]ZHOU J, WANG X, AI T, et al. Preparation an characterization of β-lactoglobulin hydrolysate-iron complexes[J]. Journal of Dairy Science, 2012, 95(8): 4230-4236.
[26]WANG X, GAO A, CHEN Y, et al. Preparation of cucumber seed peptide-calcium chelate by liquid state fermentation and its characterization[J]. Food Chemistry, 2017, 229: 487-494.
[27]CHEN D, MU X M, HUANG H, et al. Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats[J]. Journal of Functional Foods, 2014, 6: 575-584.
[28]PENG Z, HOU H, ZHANG K, et al. Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats[J]. Food Chemistry, 2017, 221: 373-378.

备注/Memo

备注/Memo:
收稿日期:2022-04-02基金项目:现代农业产业技术体系建设专项(CARS-41);江苏省自然科学基金青年科学基金项目(BK20210160)作者简介:杨静(1986-),女,河南南阳人,博士,助理研究员,主要研究方向为畜禽副产物综合利用。(E-mail)20210007@jaas.ac.cn通讯作者:王道营,(E-mail)wdy0373@aliyun.com
更新日期/Last Update: 2023-01-13