[1]潘月,曹宏鑫,齐家国,等.基于高光谱和数据挖掘的油菜植株含水率定量监测模型[J].江苏农业学报,2022,38(06):1550-1558.[doi:doi:10.3969/j.issn.1000-4440.2022.06.013]
 PAN Yue,CAO Hong-xin,QI Jia-guo,et al.Quantitative monitoring models of plant water content in rapeseed based on hyperspectrum and related data mining[J].,2022,38(06):1550-1558.[doi:doi:10.3969/j.issn.1000-4440.2022.06.013]
点击复制

基于高光谱和数据挖掘的油菜植株含水率定量监测模型()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年06期
页码:
1550-1558
栏目:
农业信息工程
出版日期:
2022-12-31

文章信息/Info

Title:
Quantitative monitoring models of plant water content in rapeseed based on hyperspectrum and related data mining
作者:
潘月12曹宏鑫2齐家国1吴菲23韩旭杰12丁昊迪12葛道阔2张玲玲2张伟欣2张文宇2
(1.南京农业大学农学院/亚洲农业研究中心,江苏南京210095;2.江苏省农业科学院农业信息研究所,江苏南京210014;3.扬州大学农学院,江苏扬州225009)
Author(s):
PAN Yue12CAO Hong-xin2QI Jia-guo1WU Fei23HAN Xu-jie12DING Hao-di12GE Dao-kuo2ZHANG Ling-ling2ZHANG Wei-xin2ZHANG Wen-yu2
(1.College of Agriculture/Asia Hub on Agriculture, Nanjing Agricultural University, Nanjing 210095, China;2.Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;3.College of Agriculture, Yangzhou University, Yangzhou 225009, China)
关键词:
高光谱油菜连续投影算法竞争自适应加权算法BP神经网络
Keywords:
hyperspectralrapeseedsuccessive projection algorithmcompetitive adaptive reweighted samplingBP neural network
分类号:
S126
DOI:
doi:10.3969/j.issn.1000-4440.2022.06.013
文献标志码:
A
摘要:
为了构建监测效果更好、更具普适性的油菜植株含水率(Plant water content, PWC)定量监测模型,以油菜品种浙杂903、宁油22和宁杂1818为试验材料,设置2个施肥水平和3个水分处理,基于2019-2020年和2020-2021年生长季田间试验资料,在PWC的高光谱响应敏感波段范围采用逐步回归(Stepwise regression, SR)分析、连续投影算法(Successive projection algorithm, SPA)、竞争自适应加权算法(Competitive adaptive reweighted sampling, CARS)以及减量精细采样法(Reduced precise sampling method, RPSM)深度挖掘高光谱数据,通过筛选最优波段组合与光谱指数,基于线性回归(Linear regression, LR)、BP神经网络(Back-propagation neural network, BPNN)和支持向量机回归(Support vector regression, SVR)方法构建并比较油菜植株含水率监测模型。结果表明,针对油菜PWC监测,SR分析筛选的最优波段组合为730 nm、986 nm和1 071 nm,SPA法分析筛选的最优波段组合为686 nm、695 nm、707 nm、746 nm、964 nm、1 065 nm和1 069 nm,CARS法分析筛选的最优波段组合为694 nm、695 nm、696 nm、863 nm、864 nm、893 nm、973 nm、986 nm、1 050 nm和1 071 nm。RPSM筛选的最优光谱指数是归一化差值光谱指数(R981,R894)和比值光谱指数(R981,R894),其利用的波段均位于近红外波段。前述3个方法筛选的波段变量更多,蕴含的信息更全面,估测精度普遍优于光谱指数。建模分析结果表明,SPA-LR模型、SPA-BP模型、SPA-SVR模型均能实现油菜PWC的精确监测,经检验,其估测值和实测值的R2分别为0.693、0.940、0.841,均方根误差(RMSE)分别为1.623%、1.836%和1.227%。结果证明高光谱数据具备深度挖掘价值,运用全波段光谱分析方法能够在降维的同时保留有效信息,利用筛选出的波段组合构建线性或非线性模型,均能实现大田条件下全生育期油菜植株含水率的定量监测。
Abstract:
To construct a quantitative monitoring model for plant water content (PWC) of rapeseed with relative better monitoring effect and more universality, rapeseed cultivars Zheza 903, Ningyou 22, and Ningza 1818 were used as the experimental materials in this study, two fertilization levels and three water treatments were set. Based on field test data in growing seasons of 2019-2020 and 2020-2021, the hyperspectral data were deeply minined by stepwise regression (SR) analysis, successive projection algorithm (SPA), competitive adaptive reweighted sampling (CARS) and reduced precise sampling method (RPSM), within the sensitive band range of hyperspectral response of PWC. By screening the optimal band combination and spectral index, the monitoring models of the rapeseed PWC were constructed and compared based on linear regression (LR), back-propagation neural network (BPNN), and support vector machine regression (SVR). The results showed that, for the monitoring of rapeseed PWC, the optimal bands combination by SR analysis was 730 nm, 986 nm and 1 071 nm, the optimal bands combination by SPA method was 686 nm, 695 nm, 707 nm, 746 nm, 964 nm, 1 065 nm and 1 069 nm, and the optimal bands combination by CARS method was 694 nm, 695nm, 696 nm, 863 nm, 864 nm, 893 nm, 973 nm, 986 nm, 1 050 nm and 1 071 nm. The optimal spectral indices screened by RPSM were reduced precise sampling method (NDSI) (R981, R894) and ratio spectral index (RSI) (R981, R894), all the utilized bands were located in the near-infrared band region. The above three methods screened relatively more band variables, contained relatively more comprehensive information, and the estimation accuracies were generally better than spectral indices. Analysis results of modeling showed that, the SPA-LR model, SPA-BP model and SPA-SVR model could realize accurate monitoring of rapeseed PWC. Through testing, R2 of estimated value and measured value were 0.693, 0.940 and 0.841, respectively, and root mean square error (RMSE) were 1.623%, 1.836% and 1.227%, respectively. This study proved that, the hyperspectral data have the value of deep mining, and spectral analysis method based on full-band can reduce dimensionality while retaining effective information. Quantitative monitoring of rapeseed PWC in the whole growth period under field conditions can all be realized by constructing a linear or nonlinear model using the selected band combinations.

参考文献/References:

[1]沈金雄,傅廷栋. 我国油菜生产、改良与食用油供给安全[J]. 中国农业科技导报, 2011, 13(1): 1-8.
[2]瞿益民,唐合年,葛妹兰,等. 油菜需水量试验分析[J]. 江苏水利, 2005(10): 20-21,23.
[3]张永忠. 平凉市冬油菜需水量试验结果分析[J]. 甘肃水利水电技术, 2003(4): 331-333.
[4]谢素华,杨明高. 人民渠平原灌区油菜需水量及需水规律研究[J]. 四川水利, 2001(1): 33-35.
[5]黄纯倩,朱晓义,张亮,等, 干旱和高温对油菜叶片光合作用和叶绿素荧光特性的影响[J]. 中国油料作物学报, 2017, 39(3): 342-350.
[6]邹小云,刘宝林,宋来强,等. 施氮量与花期水分胁迫对不同氮效率油菜产量性能及氮肥利用效率的影响[J]. 华北农学报, 2015, 30(2): 220-226.
[7]宋丰萍. 渍水时间对油菜生长及产量的影响[J]. 作物学报, 2010, 36(1): 170-176.
[8]MAMNABI S, NASROLLAHZADEH S, GHASSEMI-GOLEZANI K, et al. Improving yield-related physiological characteristics of spring rapeseed by integrated fertilizer management under water deficit conditions[J]. Saudi Journal of Biological Sciences, 2020, 27(3): 797-804.
[9]赵丽英,王伟,宋玉伟. 土壤水分胁迫下油菜光合特性变化和膜伤害研究[J]. 河南农业科学, 2010(8): 33-35.
[10]QUEMADA C, PREZ-ESCUDERO J M, GONZALO R, et al. Remote sensing for plant water content monitoring: a review[J]. Remote Sensing, 2021, 13(11): 2088.
[11]杨玉清,张甜甜,李军会,等. 近红外高光谱的活体玉米叶片水分成像研究[J]. 光谱学与光谱分析, 2018, 38(12): 3743-3747.
[12]KRISHNA G, SAHOO R N, SINGH P, et al. Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing[J]. Agricultural Water Management, 2019, 213:231-244.
[13]刘晓静,陈国庆,王良,等. 不同生育时期冬小麦叶片相对含水量高光谱监测[J]. 麦类作物学报, 2018, 38(7): 854-862.
[14]张晓东,毛罕平,左志宇,等. 干旱胁迫下油菜含水率的高光谱遥感估算研究[J]. 安徽农业科学, 2011, 39(30): 18451-18452,18487.
[15]张晓东,李立,毛罕平,等. 基于PCA-BP多特征融合的油菜水分胁迫无损检测[J]. 江苏大学学报(自然科学版), 2016, 37(2): 174-182.
[16]仝春艳,马驿,杨振忠,等. 基于角度指数的油菜叶片等效水厚度估算研究[J]. 核农学报, 2019, 33(1): 187-198.
[17]张君,蔡振江,张东方,等. 基于机器学习与光谱技术的油菜叶片含水率估测研究[J]. 河北农业大学学报, 2021, 44(6): 122-127.
[18]YE S F, WANG D, MIN S G. Successive projections algorithm combined with uninformative variable elimination for spectral variable selection[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 91(2): 194-199.
[19]LI H D, LIANG Y Z, Xu Q S, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta, 2009, 648(1): 77-84.
[20]姚霞,刘小军,王薇,等. 基于减量精细采样法估算小麦叶片氮积累量的最佳归一化光谱指数[J]. 应用生态学报, 2010, 21(12): 3175-3182.
[21]CHANG C C, LIN C J. LIBSVM: a library for support vector machine[J]. ACM Transactions on Internet Systems and Technology, 2011, 2: 1-27.
[22]THOMAS J R, NAMKEN L N, OERTHER G F, et al. Estimating leaf water content by reflectance measurements 1[J]. Agronomy Journal, 1971, 63(6): 845-847.
[23]HOLBEN B N, SCHUTT J B, MCMURTREY J. Leaf water stress detection utilizing thematic mapper bands 3, 4 and 5 in soybean plants[J]. International Journal of Remote Sensing, 1983, 4(2): 289-297.
[24]JACKSON R D, EZRA C E. Spectral response of cotton to suddenly induced water stress[J]. International Journal of Remote Sensing, 1985, 6(1): 177-185.
[25]JENSEN J R. Remote sensing of the environment[M]. New York: Pearson Education Limited, 2007.
[26]LIU L Y, WANG J H, HUANG W J, et al. Estimating winter wheat plant water content using red edge parameters[J]. International Journal of Remote Sensing, 2003, 25(17):1688-1691.
[27]郭松,常庆瑞,崔小涛,等. 基于光谱变换与SPA-SVR的玉米SPAD值高光谱估测[J]. 东北农业大学学报, 2021, 52(8): 79-88.
[28]王玉娜,李粉玲,王伟东,等. 基于连续投影算法和光谱变换的冬小麦生物量高光谱遥感估算[J]. 麦类作物学报, 2020, 40(11): 1389-1398.
[29]董哲,杨武德,朱洪芬,等. 基于连续投影算法与BP神经网络的玉米叶片SPAD值高光谱估算[J]. 山西农业科学, 2019, 47(5): 751-755.
[30]易翔,张立福,吕新,等. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234.
[31]孙俊,丛孙丽,毛罕平,等. 基于高光谱的油麦菜叶片水分CARS-ABC-SVR预测模型[J]. 农业工程学报, 2017, 33(5): 178-184.
[32]王松磊,吴龙国,王彩霞,等.可见近红外高光谱快速诊断番茄叶片含水量及其分布[J].光电子·激光, 2019, 30(9): 941-950.
[33]陈秀青,杨琦,韩景晔,等. 基于叶冠尺度高光谱的冬小麦叶片含水量估算[J]. 光谱学与光谱分析, 2020, 40(3): 891-897.
[34]张峰,周广胜. 植被含水量高光谱遥感监测研究进展[J]. 植物生态学报, 2018, 42(5): 517-525.

相似文献/References:

[1]付三雄,周晓婴,张 维,等.种植密度和施氮量对油菜产量、品质及机收性状的影响[J].江苏农业学报,2016,(03):548.[doi:10.3969/j.issn.1000-4440.2016.03.010]
 FU San-xiong,ZHOU Xiao-ying,ZHANG Wei,et al.Influences of planting density and nitrogen application rate on yield and quality and mechine harvest traits of rapeseed(Brassica napus L.)[J].,2016,(06):548.[doi:10.3969/j.issn.1000-4440.2016.03.010]
[2]陈魏涛,曹宏鑫,张保军,等.氮素营养诊断技术及其在油菜上的应用研究进展[J].江苏农业学报,2016,(04):953.[doi:10.3969/j.issn.100-4440.2016.04.038]
 CHEN Wei-tao,CAO Hong-xin,ZHANG Bao-jun,et al.Research progresses in nitrogen diagnosis technology and its application in rapeseed[J].,2016,(06):953.[doi:10.3969/j.issn.100-4440.2016.04.038]
[3]周晓婴,付三雄,陈松,等.甘蓝型油菜CRABS CLAW基因克隆及其RNA干扰载体的构建[J].江苏农业学报,2015,(04):737.[doi:10.3969/j.issn.1000-4440.2015.04.005]
 ZHOU Xiao-ying,FU San-xiong,CHEN Song,et al.Cloning of CRABS CLAW gene from Brassica napus and construction of its RNA interference vector[J].,2015,(06):737.[doi:10.3969/j.issn.1000-4440.2015.04.005]
[4]熊洁,邹晓芬,邹小云,等.干旱胁迫对不同基因型油菜农艺性状和产量的影响[J].江苏农业学报,2015,(03):494.[doi:10.3969/j.issn.1000-4440.2015.03.005]
 XIONG Jie,ZOU Xiao-fen,ZOU Xiao-yun,et al.Effects of drought stress on agronomic traits and yield of different rapeseed genotypes[J].,2015,(06):494.[doi:10.3969/j.issn.1000-4440.2015.03.005]
[5]熊洁,李书宇,邹晓芬,等.轻简化育苗移栽方式对油菜生长发育和产量的影响[J].江苏农业学报,2015,(02):317.[doi:10.3969/j.issn.1000-4440.2015.02.015]
 XIONG Jie,LI Shu-yu,ZOU Xiao-fen,et al.Effects of simplified seedling and transplanting patterns on growth and development and yield of rapeseed[J].,2015,(06):317.[doi:10.3969/j.issn.1000-4440.2015.02.015]
[6]刘志刚,徐勤超.基质破碎度对光谱法检测基质含水率的影响[J].江苏农业学报,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
 LIU Zhi-gang,XU Qin-chao.Influences of substrate fragmentation degree on substrate water contents detected by hyper-spectral technology[J].,2017,(06):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
[7]李茹,陈国奇,张玉华,等.油菜和小麦秸秆水浸提液对千金子种子萌发和幼苗生长的影响及其应用[J].江苏农业学报,2018,(02):293.[doi:doi:10.3969/j.issn.1000-4440.2018.02.010]
 LI Ru,CHEN Guo-qi,ZHANG Yu-hua,et al.Influences of oilseed rape and wheat aquatic straw extract on Leptochloa chinensis seed germination and seedling growth, and the application potential[J].,2018,(06):293.[doi:doi:10.3969/j.issn.1000-4440.2018.02.010]
[8]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
 WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(06):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[9]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
 ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(06):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
[10]芦兵,孙俊,毛罕平,等.高光谱和图像特征相融合的生菜病害识别[J].江苏农业学报,2018,(06):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
 LU Bing,SUN Jun,MAO Han-ping,et al.Disease recognition of lettuce with feature fusion based on hyperspectrum and image[J].,2018,(06):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]

备注/Memo

备注/Memo:
收稿日期:2022-04-01基金项目:国家自然科学基金项目(31471415、31871522);江苏省农业科技自主创新资金项目[CX(19)2040-1]作者简介:潘月(1997-),女,安徽芜湖人,硕士研究生,主要从事农业定量遥感研究。(E-mail)panyue1007@163.com通讯作者:曹宏鑫,(E-mail)caohongxin@hotmail.com;齐家国,(E-mail)qi@msu.edu
更新日期/Last Update: 2023-01-13