[1]唐普传,张美娜,孙传亮,等.逐日平台搭载作物生长信息传感器效果检验与评估[J].江苏农业学报,2022,38(06):1541-1549.[doi:doi:10.3969/j.issn.1000-4440.2022.06.012]
 TANG Pu-chuan,ZHANG Mei-na,SUN Chuan-liang,et al.Test and evaluation of the solar tracking platform effect for crop growth information sensors[J].,2022,38(06):1541-1549.[doi:doi:10.3969/j.issn.1000-4440.2022.06.012]
点击复制

逐日平台搭载作物生长信息传感器效果检验与评估()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年06期
页码:
1541-1549
栏目:
农业信息工程
出版日期:
2022-12-31

文章信息/Info

Title:
Test and evaluation of the solar tracking platform effect for crop growth information sensors
作者:
唐普传12张美娜12孙传亮2吴茜2曹静2梁万杰2张伟欣12葛道阔2曹宏鑫2刘乃森3张文宇12
(1.江苏大学农业工程学院,江苏镇江212013;2.江苏省农业科学院农业信息研究所/农业数字孪生联合实验室/种质资源创新与信息化利用联合实验室,江苏南京210014;3.淮阴师范学院/江苏省区域现代农业与环境保护协同创新中心/江苏省环洪泽湖生态农业生物技术重点实验室/江苏省洪泽湖蓝藻预警与生态修复工程研究中心,江苏淮安223300;4.南京农业大学工学院,江苏南京210031)
Author(s):
TANG Pu-chuan12ZHANG Mei-na12SUN Chuan-liang2WU Qian2CAO Jing2LIANG Wan-jie2ZHANG Wei-xin12GE Dao-kuo2CAO Hong-xin2LIU Nai-sen3ZHANG Wen-yu12
(1.School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China;2.Institute of Agricultural Information/YuanQi-IAI Joint Laboratory for Agricultural Digital Twin/IGRB-IAI Joint Laboratory of Germplasm Resources Innovation & Information Utilization, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;3.Huaiyin Normal University/Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory of Eco-Agricultural Biotechnology Around Hongze Lake/Jiangsu Engineering Research Center for Cyanophytes Forecast and Ecological Restoration of Hongze Lake, Huai’an 223300, China;4.College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)
关键词:
逐日平台太阳高度角作物生长信息传感器智能传感器作物监测
Keywords:
solar tracking platformsolar altitude anglecrop growth information sensorsmart sensorcrop monitoring
分类号:
S126
DOI:
doi:10.3969/j.issn.1000-4440.2022.06.012
文献标志码:
A
摘要:
为验证逐日平台追踪太阳的准确性及其消除太阳高度对作物生长信息传感器影响的效果,从而解决被动光源作物生长信息监测仪器因太阳高度角变化导致反射率测量误差波动大、有效采样窗口期短等问题,在课题组前期被动光源作物生长信息传感器和逐日平台研制的基础上,通过逐日准确性试验、标准反射率以及作物冠层反射率检测对比试验,对逐日平台搭载作物生长信息传感器的实际效果进行了检验与评估。结果显示,逐日平台水平方向追踪太阳的平均偏离角度为0.592°,竖直方向追踪太阳的平均偏离角度为0.470°;当作物生长信息传感器直接测量10%、20%、40%、60%标准反射率灰度板和作物冠层反射率时,在8:00-17:00时间段内因受太阳高度角影响,传感器测量的反射率波动幅度达60.00%以上,仅中午前后(11:00-13:00)测量的反射率较为准确;当使用逐日平台搭载作物生长信息传感器测量相同对象时,8:00-17:00时间段内测得反射率均较为准确,反射率波动幅度在2.53%以内。试验结果表明,使用逐日平台能显著提升被动光源作物生长信息传感器测量的准确性,延长作物生长信息传感器日工作时间1倍以上。
Abstract:
The solar tracking platform had been developed by our team to solve the problems that the fluctuation of reflectance measurement error was large and the sampling window period was short for the passive light source crop growth information sensors, due to the change of solar elevation. To verify the sun tracking accuracy of the solar tracking platform and its effect on eliminating the influence of solar elevation on crop growth information sensors, the performance of the platform was evaluated through the sun tracking accuracy test, standard reflectance detection comparison, and crop reflectance measurement verification, based on the passive light source crop growth information sensor our group had already developed. The results indicated that the average deviation angle for tracking the sun in the horizontal direction of the platform was 0.592°, and the average deviation angle of the sun tracking in the vertical direction was 0.470°. Affected by the solar elevation, amplitude of the reflectance measured directly by crop growth information sensors from 10%, 20%, 40% and 60% reflectance standards and crop canopy during 8:00-17:00, was more than 60.00%, and only the reflectance measured around noon (11:00-13:00) was more accurate. However, the reflectance from 8:00 to 17:00 was more accurate, and the reflectance fluctuation was within 2.53%, when the same object was measured using the crop growth information sensor carried by the platform. These results suggest that the use of the solar tracking platform can enhance the sampling accuracy of the passive light source crop growth information sensors, and prolong the daily working time of the sensor by more than one time.

参考文献/References:

[1]曹卫星,姚霞,程涛,等. 作物生长监测技术的研究与应用[C]. 杭州:2019年中国作物学会学术年会, 2019.
[2]吴琼,朱大洲,王成,等. 农作物苗期长势无损监测技术研究进展[J]. 农业工程, 2011, 1(4): 19-25.
[3]徐天成,吴敏,贺冬仙,等. 机器视觉在农业工程中的应用[J]. 农业工程, 2021, 11(8): 40-48.
[4]张乐春. 基于无人机光谱分析的农田监测系统应用[J]. 农机化研究, 2019, 41(7): 222-225.
[5]何勇,彭继宇,刘飞,等. 基于光谱和成像技术的作物养分生理信息快速检测研究进展[J]. 农业工程学报, 2015, 31(3): 174-189.
[6]杨迎康,饶正华,李淑慧. 农业现场快速检测仪器的研究与应用[J]. 农业工程, 2020, 10(2): 21-25.
[7]王凡,赵春江,徐波,等. 便携式茶鲜叶品质光谱检测装置研制[J]. 农业工程学报, 2020, 36(24): 273-280.
[8]杨建宁,张井超,朱艳,等. 便携式作物生长监测诊断仪性能试验[J]. 农业机械学报, 2013, 44(4): 208-212.
[9]梅晨阳,徐红春,赵建宜. 基于OPM的便携式光谱仪的设计与实现[J]. 电子设计工程, 2020, 28(20): 35-38.
[10]PICHON P, BARBET A, BLENGINO D, et al. High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser[J]. Optics & Laser Technology, 2017, 96: 7-12.
[11]FAHEY T, PHAM H, GARDI A, et al. Active and passive electro-optical sensors for health assessment in food crops[J]. Sensors (Basel, Switzerland), 2020, 21(1): 171.
[12]孙红,邢子正,张智勇,等. 基于RED-NIR的主动光源叶绿素含量检测装置设计与试验[J]. 农业机械学报, 2019, 50(S1): 175-181.
[13]舒韵涛,吴海云,卫勇,等. 面向近红外光谱速测的卤钨灯光源控制系统设计[J]. 农业开发与装备, 2021(3): 38-39.
[14]李修华,李民赞,崔笛,等. 基于双波段作物长势分析仪的东北水稻长势监测[J]. 农业工程学报, 2011, 27(8): 206-210.
[15]NI J, ZHANG J, WU R, et al. Development of an apparatus for crop-growth monitoring and diagnosis[J]. Sensors, 2018,18(9):3129.
[16]RYU J H, DOHYEOK O H, CHO J. Simple method for extracting the seasonal signals of photochemical reflectance index and normalized difference vegetation index measured using a spectral reflectance sensor[J]. Journal of Integrative Agriculture, 2021, 20(7): 1969-1986
[17]LI D, CHEN J M, ZHANG X, et al. Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time[J]. Remote Sensing of Environment, 2020, 248: 111985.
[18]倪军,姚霞,田永超,等. 便携式作物生长监测诊断仪的设计与试验[J]. 农业工程学报, 2013, 29(6): 150-156.
[19]陈冲,姜春宝,耿晓明. 大型光伏电站太阳自动追踪系统的设计及应用[J]. 自动化仪表, 2020, 41(10): 102-105.
[20]SATU M G, CASTAO F, ORTEGA M G, et al. Comparison of control strategies for HCPV sun tracking[J]. European Journal of Control, 2021, 62: 165-170.
[21]MOHAMMAD N, KARIM T. The Design and implementation of hybrid automatic solar tracking system[J]. International Journal of Electrical & Power Engineering, 2012,6(3):111-117.
[22]MIRDANIES M, SAPUTRA R P. Dual-axis solar tracking system: A combined astronomical estimation and visual feedback[C]// 2016 International Conference on Sustainable Energy Engineering and Application, Piscataway, N.J: IEEE Computer Society, 2016: 88-94.
[23]赵永鑫,黄韬,陈卫,等. 基于单片机的光伏追日系统设计[J]. 现代电子技术, 2021, 44(6): 125-128.
[24]韦永兰,马海宁,张学栋. 基于PLC的追日控制系统设计与效率分析[J]. 控制工程, 2016, 23(5): 773-776.
[25]刘乃森,唐普传,刘福霞,等. 一种承载作物生长信息传感器的逐日装置: CN202210011758.X[P]. 2022-01-07.
[26]张文宇,唐普传,刘乃森,等.一种逐日装置的运动控制方法:CN202210019106.0[P]. 2022-01-10.
[27]刘乃森,张文宇,刘福霞,等.一种可保持自平衡的作物生长信息传感器:CN202110919880.2[P]. 2021-11-12.
[28]张瑜,路博. 一种高精度的太阳跟踪方法[J]. 可再生能源, 2012, 30(2): 103-106.
[29]ROBINSON J, SMALE D, POLLARD D, et al. Solar tracker with optical feedback and continuous rotation[J]. Atmospheric Measurement Techniques, 2020, 13(11): 5855-5871.

备注/Memo

备注/Memo:
收稿日期:2022-03-14基金项目:国家自然科学基金项目(31871522、32201664、31601223);国家重点研发计划项目(2016YFD0300604、2017YFD0300409);江苏省自然科学基金项目(BK20200277);江苏省农业科技自主创新基金项目[CX(20)3073];江苏省重点研发计划项目(BE2020409、BE2022351);江苏省高等学校自然科学研究重大项目(18K JA 180002);江苏省农业科学院科学仪器开放共享自主研究课题[GX(21)1002]作者简介:唐普传(1996-),男,安徽阜阳人,硕士研究生,主要从事智能传感器研制工作。(E-mail)puchuanTang@163.com通讯作者:刘乃森,(Tel)0517-83526661;(E-mail) boomzip@163.com。张文宇,(Tel)025-84391622;(E-mail)research@wwery.cn
更新日期/Last Update: 2023-01-13