参考文献/References:
[1]QI X H, ZHANG M F, YANG J H. Molecular phylogeny of Chinese vegetable mustard (Brassica juncea) based on the internal transcribed spacers (ITS) of nuclear ribosomal DNA[J]. Genetic Resources and Crop Evolution, 2007, 54(8): 1709-1716.
[2]ZHANG L, LI Z, GARRAWAY J, et al. The casein kinase 2 β subunit CK2B1 is required for swollen stem formation via cell cycle control in vegetable Brassica juncea[J]. Plant, 2020, 104(3): 706-717.
[3]XU Z, WANG Q, GUO Y, et al. Stem-swelling and photosynthate partitioning in stem mustard are regulated by photoperiod and plant hormones[J]. Environmental and Experimental Botany, 2008, 62(2): 160-167.
[4]UMERM J, BIN S L, ZHAO S J, et al. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles[J]. Horticulture Research, 2020, 7(1): 3-7.
[5]DOIDY J, GRACE E, WIPF D, et al. Sugar transporters in plants and in their interactions with fungi[J]. Trends Plant Sci, 2012, 17(7): 13-22.
[6]SUZUKI Y J, ISHIYAMA K K, SUGAWARA M K, et al. Overproduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase improves photosynthesis slightly under elevated [CO2] conditions in rice[J]. Plant & cell physiology, 2020, 62(1): 156-165.
[7]MARTIN W, BRINKMANN H, SAVONNA C, et al. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes[J]. Proc Natl Acad Sci USA, 1993, 90(18): 8692-8696.
[8]WU Y H, WU M, HE G W, et al. Glyceraldehyde-3-phosphate dehydrogenase: a universal internal control for western blots in prokaryotic and eukaryotic cells[J]. Anal Biochem, 2012, 423(1): 15-22.
[9]PENALOZA E, GUTIERREZ A, MARTINE J, et al. Differential gene expression in proteoid root clusters of white lupin (Lupinus albus)[J]. Plant Physiology, 2002, 116(1): 28-36.
[10]JEONG M J, PARK S C, BYUN M O. Improvement of salt tolerance in transgenic potato plants by glyceraldehydes-3-phosphate dehydrogenase gene transfer[J]. Molecules and Cells, 2001, 12(2): 185-189.
[11]DAVOUDI M, MORAD-SARDAREH H, PAKNEJAD M, et al. The possible effect of silver nanoparticles on glyceraldehyde-3-phosphate dehydrogenase activity and formation of amyloid-like aggregates in MCF-7 cell line[J]. IUBMB Life, 2020, 72(10): 2214-2224.
[12]MUNOZ B J, CASCALES M B, IRLES S A, et al. The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for viable pollen development in Arabidopsis[J]. Plant Physiol, 2010, 152(5): 1830-1841.
[13]KOPECKOVA M, PAVKOVA I, STULIK J. Diverse localization and protein binding abilities of glyceraldehyde-3-phosphate dehydrogenase in pathogenic bacteria: the key to its multifunctionality[J]. Front Cell Infect Microbiol,2020, 10: 19.
[14]PIATTONI C V, FERRERO D M L, VEGETTI A, et al. Cytosolic glyceraldehyde-3-phosphate dehydrogenase is phosphorylated during seed development[J]. Front Plant Sci, 2017, 8: 518-522.
[15]SEBASTIAN P R, PAULA C, ALBERTO A I, et al. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase[J]. Plant Physiol, 2008, 148(3): 1655-1667.
[16]NAKASHIMA K, SHINWARI Z K, SAKUMA Y, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration and high-salinity-responsive gene expression[J]. Plant Mol Biol, 2000, 42(4): 657-665.
[17]LI C W, SU R C, CHENG C P, et al. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP mediated defense pathway[J]. Plant Physiol, 2011, 156(1): 213-227.
[18]KITOMI Y, ITO H, HOBO T, et al. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling[J]. Plant, 2011, 67(3): 472-484.
[19]李彤,邵慧慧,韩嘉宁,等. 金鱼草AmPIF4基因克隆及调控花香物质合成释放功能分析[J]. 西北植物学报, 2021, 41(12): 1994-2001.
[20]LI M Y, XIE F J, HE Q, et al. Expression analysis of XTH in stem swelling of stem mustard and selection of reference genes[J]. Genes (Basel), 2020, 11(1):113-116.
[21]KUMAR S, STECHER G, KNYAZ C, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
[22]TAKEDA T, FUKUI Y. Possible role of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase in growth promotion of Arabidopsis seedlings by low levels of selenium[J]. Biosci Biotechnol Biochem,2015,79(10): 1579-1586.
[23]YOON J, CHO L H, TUN W, et al. Sucrose signaling in higher plants[J]. Plant Sci, 2021, 302: 110703.
[24]严志祥,杨海燕,樊苏帆,等. 黑莓果实发育过程中蔗糖磷酸合成酶基因的表达分析[J].南京林业大学学报(自然科学版),2022,46(1):179-186.
[25]李东霞,徐中亮,符海泉,等. 糖对椰枣组织培养物的影响[J].南方农业学报,2021,52(11):3059-3066.
[26]田双燕,张应龙,何天久,等. 马铃薯间作玉米对马铃薯生长、产量及糖类物质的影响[J].南方农业学报,2021,52(5):1198-1205.
[27]姜楠南,张启翔,王媛,等. 赤霉素对大富贵芍药休眠解除及内源激素和糖类代谢的影响[J].南京林业大学学报(自然科学版),2020,44(3):26-32.
[28]BACKHAUSEN J E, VETTER S, BAALMANN E, et al. NAD-dependent malate dehydrogenase and glyceraldehyde-3-phosph-ate dehydrogenase isoenzymes play an important role in dark metabolism of various plastid types[J]. Planta, 1998, 205: 359-366.
[29]AVILAN L, MABERLY C S, MEKHALF M, et al. Regulation of glyceraldehyde-3-phosphate dehydrogenase in the eustigmatophyte Pseudocharaciopsis ovalis is intermediate between a chlorophyte and a diatom[J]. Eur J Phycol, 2012, 47(3): 207-215.
[30]SEBASTIAN P R, PAULA C, ALBERTO A I, et al. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase[J]. Plant Physiol, 2008, 148(3): 1655-1667.
[31]HART G W, HOUSLEY M P, SLAWSON C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins[J]. Nature, 2007, 446(7139): 1017-1022.
[32]Woodward A W, Bartel B. Auxin: regulation, action, and interaction[J]. Ann Bot, 2005, 95(5): 707-735.