[1]严文辉,李志丹,邓逐流,等.番茄根系分泌物苹果酸和丁香酸对土壤细菌群落结构和潜在功能的影响[J].江苏农业学报,2022,38(05):1340-1347.[doi:doi:10.3969/j.issn.1000-4440.2022.05.021]
 YAN Wen-hui,LI Zhi-dan,DENG Zhu-liu,et al.Effects of malic acid and syringic acid from tomato root exudates on soil bacterial community structure and potential function[J].,2022,38(05):1340-1347.[doi:doi:10.3969/j.issn.1000-4440.2022.05.021]
点击复制

番茄根系分泌物苹果酸和丁香酸对土壤细菌群落结构和潜在功能的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年05期
页码:
1340-1347
栏目:
园艺
出版日期:
2022-10-31

文章信息/Info

Title:
Effects of malic acid and syringic acid from tomato root exudates on soil bacterial community structure and potential function
作者:
严文辉1李志丹1邓逐流2谢忱2谷益安2雷鹏2王瑞2李莎2徐虹2
(1.南京工业大学生物与制药工程学院,江苏南京211816;2.南京工业大学食品与轻工学院,江苏南京211816)
Author(s):
YAN Wen-hui1LI Zhi-dan1DENG Zhu-liu2XIE Chen2GU Yi-an2LEI Peng2WANG Rui2LI Sha2XU Hong2
(1.College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;2.College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China)
关键词:
苹果酸丁香酸根系分泌物土壤细菌群落功能预测
Keywords:
malic acidsyringic acidroot exudationsoil bacterial communityfunction prediction
分类号:
S154.36
DOI:
doi:10.3969/j.issn.1000-4440.2022.05.021
文献标志码:
A
摘要:
苹果酸、丁香酸是番茄根系分泌物的重要组分,将苹果酸、丁香酸作为外源物持续添加到黄瓜田、番茄田土壤中,并通过定量PCR、扩增子高通量测序及功能预测手段探究苹果酸、丁香酸对土壤细菌群落结构及其潜在功能的影响。结果表明,与对照相比,添加外源丁香酸能显著降低土壤细菌总量,降幅达50.57%~56.38%,而苹果酸的影响不显著。添加外源苹果酸、丁香酸可明显改变土壤细菌群落组成,可解释26.53%的细菌群落变异,苹果酸在黄瓜田、番茄田土壤中均富集假诺卡氏菌属(Pseudonocardia)细菌,而丁香酸均富集Aridibacter。此外,添加外源苹果酸能显著提高细菌群落对短链有机酸的降解能力,而添加外源丁香酸可显著降低细菌形成生物膜的能力并提高芳香族化合物的降解能力,但上述作用与土地利用方式有关。
Abstract:
Malic acid and syringic acid are important components of tomato root exudates. In this study, malic acid and syringic acid were continuously added to the soil of cucumber and tomato fields as exogenous substances. Quantitative PCR, 16S rRNA amplicon sequencing and function prediction methods were used to explore the effects of malic acid and syringic acid on the bacterial community structure and potential functions. The results showed that syringic acid could significantly reduce the total bacterial abundance by 50.57%-56.38%, while the effect of malic acid was not significant. Malic acid and syringic acid could significantly change the composition of soil bacterial community, and explain 26.53% of the bacterial community variation. Malic acid enriched Pseudonocardia in cucumber field soil and tomato field soil, while syringic acid enriched Aridibacter. In addition, the addition of exogenous malic acid can significantly increase the ability of bacterial community in short-chain organic acids metabolism, while the addition of exogenous syringic acid can significantly reduce the ability of soil bacterial community in biofilm formation and increase the ability in degradation of aromatic compounds, but these effects are related to the type of land use.

参考文献/References:

[1]罗永清,赵学勇,李美霞. 植物根系分泌物生态效应及其影响因素研究综述[J]. 应用生态学报, 2012, 23(12): 3496-3504.
[2]沈仁芳,赵学强. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 2015, 35(20): 6584-6591.
[3]邓晓,李勤奋,侯宪文,等. 香蕉枯萎病患病与健康蕉园土壤微生物群落功能多样性的比较研究[J]. 土壤通报, 2013, 44(2): 355-362.
[4]李华山,雷鹏,许宗奇,等. 耐盐促生菌Agrobacterium sp.DF-2增强黄瓜幼苗耐盐性的研究[J]. 江苏农业学报, 2017, 33(3): 654-661.
[5]刘琴,徐健,祁建杭,等. 娄彻氏链霉菌SR-1102对番茄枯萎病的防效及根际微生物的影响[J]. 江苏农业学报, 2020, 36(5): 1133-1138.
[6]张云霞,雷鹏,许宗奇,等. 一株高效解磷菌Bacillus subtilis JT-1的筛选及其对土壤微生态和小麦生长的影响[J]. 江苏农业学报, 2016, 32(5): 1073-1080.
[7]BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57(1): 233-266.
[8]史刚荣. 植物根系分泌物的生态效应[J]. 生态学杂志, 2004, 23(1): 97-101.
[9]王亚,冯发运,葛静,等. 植物根系分泌物对土壤污染修复的作用及影响机理[J]. 生态学报, 2022, 42(3): 1-14.
[10]CHONG K P, ROSSALL S, ATONG M. In vitro antimicrobial activity and fungitoxicity of syringic acid,caffeic acid and 4-hydroxybenzoic acid against Ganoderma boninense[J]. Journal of Agricultural Science, 2009, 1(2): 15-20.
[11]GU Y, WEI Z, WANG X Q, et al. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile[J]. Biology and Fertility of Soils, 2016, 52(7): 997-1005.
[12]CHEN S, YU H, ZHOU X, et al. Cucumber (Cucumis sativus L.) seedling rhizosphere Trichoderma and Fusarium spp. communities altered by vanillic acid[J]. Frontiers in Microbiology, 2018, 9: 2195.
[13]RUDRAPPA T, CZYMMEK K J, PARE P W, et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology, 2008, 148(3): 1547-1556.
[14]YUAN J, ZHANG N, HUANG Q W, et al. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6[J]. Scientific Reports, 2015, 5: 13438
[15]TAN S Y, YANG C L, MEI X L, et al. The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5[J]. Applied Soil Ecology, 2013, 64(1): 15-22.
[16]MNDEZ J, BROWN S A. Phenols and coumarins of tomato plants[J]. Revue Canadienne De Botanique, 1971, 49(12): 2097-2100.
[17]NEFZI A, ABDALLAH R A B, JABNOUN-KHIAREDDINE H, et al. Management of fusarium crown and root rot of tomato by Solanum linnaeanum L. extracts[J]. Scientia Horticulturae, 2018, 238: 204-214.
[18]LING N, RAZA W, MA J H, et al. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere[J]. European Journal of Soil Biology, 2011, 47(6): 374-379.
[19]WEERT S D, VERMEIREN H, MULDERS I H M, et al. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens[J]. Molecular Plant-Microbe Interactions, 2002, 15(11): 1173-1180.
[20]MNDEZ J, BROWN S A. Changes in the phenolic metabolism of tomato plants infected by Agrobacterium tumefaciens [J]. Canadian Journal of Botany, 1971, 49(12): 2101-2105.
[21]GU Y, DONG K, GEISEN S, et al. The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion[J]. Plant and Soil, 2020, 452(1/2): 105-117.
[22]WANG Z L, ZHANG J H, WU F Z, et al. Changes in rhizosphere microbial communities in potted cucumber seedlings treated with syringic acid[J]. PLoS One, 2018, 13(6): e0200007.
[23]ZHOU X G, WU F Z, XIANG W S. Syringic acid inhibited cucumber seedling growth and changed rhizosphere microbial communities[J]. Plant Soil and Environment, 2014, 60(4): 158-164.
[24]ZHOU X G, ZHANG J H, PAN D D, et al. p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions[J]. Biology and Fertility of Soils, 2018, 54(3): 363-372.
[25]BAUDOIN E, BENIZRI E, GUCKERT A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere[J]. Soil Biology and Biochemistry, 2003, 35(9): 1183-1192.
[26]IIJIMA M, GRIFFITHS B S, BENGOUGH A G. Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand[J]. New Phytologist, 2010, 145(3): 477-482.
[27]TROFYMOW J A, COLEMAN D C, CAMBARDELLA C. Rate of rhizodeposition and ammonium depletion in the rhizosphere of axenic oat roots[J]. Plant and Soil, 1987, 97(3): 333-344.
[28]EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
[29]EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200.
[30]SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: open-source, platform-Independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.
[31]WANG Q, GARRITY G M, TIEDJE J M, et al. Nave Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261.
[32]AHAUER K P, WEMHEUER B, DANIEL R, et al. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data[J]. Bioinformatics, 2015, 31(17): 2882-2884.
[33]翟亚萍,王绍明,刘鸯,等. 不同种植地苜蓿根际土壤细菌群落结构多样性差异分析[J]. 新疆农业科学, 2021, 58(5): 955-964.
[34]SEGATA N, IZARD J, WALDRON L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 2011, 12(6): R60.
[35]ZALDIVAR J, INGRAM L O. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01[J]. Biotechnology and Bioengineering, 1999, 66(4): 203-210.
[36]CAMPOS F M, COUTO J A, FIGUEIREDO A R, et al. Cell membrane damage induced by phenolic acids on wine lactic acid bacteria[J]. International Journal of Food Microbiology, 2009, 135(2): 144-151.
[37]SHI C, SUN Y, ZHENG Z W, et al. Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane[J]. Food Chemistry, 2016, 197(A): 100-106.
[38]潘晓轩,葛琴雅,潘皎. 假诺卡氏菌属(Pseudonocardia)微生物对壁画和岩画类文物的危害[J]. 微生物学报, 2015, 55(7): 813-818.
[39]QI M, HUANG H, ZHANG Y, et al. Novel tetrahydrofuran (THF) degradation-associated genes and cooperation patterns of a THF-degrading microbial community as revealed by metagenomic[J]. Chemosphere, 2019, 231: 173-183.
[40]ZHENG M Q, HAN Y X, HAN H J, et al. Synergistic degradation on phenolic compounds of coal pyrolysis wastewater (CPW) by lignite activated coke-active sludge (LAC-AS) process:Insights into succession of microbial community under selective pressure[J]. Bioresource Technology, 2019, 281: 126-134.
[41]ZHAO R X, FENG J, LIU J, et al. Deciphering of microbial community and antibiotic resistance genes in activated sludge reactors under high selective pressure of different antibiotics[J]. Water Research, 2019, 151: 388-402.
[42]SONG J, LI Q, DZAKPASU M, et al. Integrating stereo-elastic packing into ecological floating bed for enhanced denitrification in landscape water[J]. Bioresource Technology, 2019, 299: 122601.
[43]程琳. 不同荒漠草原和主要植物根际土壤细菌多样性研究[D]. 兰州:兰州理工大学, 2017.
[44]孔令姣. 石油污染土壤的生物修复及细菌多样性研究[D]. 兰州:兰州理工大学, 2017.
[45]BARDGETT R D, PUTTEN W H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515(7528): 505-511.
[46]BADRI D V, VIVANCO J M. Regulation and function of root exudates[J]. Plant Cell and Environment, 2009, 36(6): 666-681.
[47]ALAGIC' S C, MALUCKOV B S, RADOJICˇIC' V B. How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review[J]. Clean Technologies and Environmental Policy, 2015, 17(3): 597-614.
[48]谷益安,孙晨,陈嘉欣,等. 添加葡萄糖和胞外多糖条件下土壤细菌多样性与青枯病病原菌入侵关系研究[J]. 土壤通报, 2020, 51(1): 115-121.
[49]MALLON C A, POLY F, LE ROUX X, et al. Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities[J]. Ecology, 2015, 96(4): 915-926.
[50]纪程,孙玉香,孟圆,等. 稻麦轮作体系长期秸秆还田对土壤真菌群落结构及秸秆降解潜力的影响[J/OL]. 农业环境科学学报,2021. https://kns.cnki.net/kcms/detail/12.1347.S.20211009.1912.011.html.
[51]BLUM U, STAMAN K L, FLINT L J, et al. Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity[J]. Journal of Chemical Ecology, 2000, 26(9): 2059-2078.
[52]KOHLWEYER U, THIEMER B, SCHRDER T, et al. Tetrahydrofuran degradation by a newly isolated culture of Pseudonocardia sp. strain K1[J]. FEMS Microbiology Letters, 2000, 186(2): 301-306.
[53]CHEN S C, DUAN G L, DING K, et al. DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil[J]. FEMS Microbiology Ecology, 2018, 94(3): fiy026.
[54]刘斯晗,郑旭阳,钟川,等. 2种嫁接番茄根系分泌活性物质对番茄青枯病及根际微生物的影响[J].南方农业学报,2021,52(12):3382-3391.
[55]裴妍,任禛,李秋桦,等. 云烟121健康与感黑胫病烟株根系及根际土壤丛枝菌根真菌差异研究[J].南方农业学报,2022,53(6):1502-1512.

备注/Memo

备注/Memo:
收稿日期:2022-01-10基金项目:国家自然科学基金项目(42177271);江苏省重点研发计划项目(BE2019390)作者简介:严文辉 (1997-),男,江西赣州人,硕士研究生,主要从事环境微生物技术研究。(E-mail)yanwenhui97@outlook.com通讯作者:谷益安,(E-mail)yian.gu@hotmail.com
更新日期/Last Update: 2022-11-07