参考文献/References:
[1]钱春花,李明阳,郑超. 苏南丘陵山区森林生物量时空变化驱动因素分析[J].江苏农业学报,2021,37(2):382-388.
[2]陶惠林,冯海宽,徐良骥,等. 基于无人机高光谱遥感数据的冬小麦生物量估算[J].江苏农业学报,2020,36(5):1154-1162.
[3]张志,田昕,陈尔学,等. 森林地上生物量估测方法研究综述[J].北京林业大学学报,2011,33(5):144-150.
[4]MUUKKONEN P. Generalized allometric volume and biomass equations for some tree species in Europe[J]. European Journal of Forest Research,2007,126(2):157-166.
[5]JAVKHLAN N, MUNKH-ERDENE B, GUANGLIANG L, et al. Allometric equations for estimating above-ground biomass of Nitraria sibirica Pall. in Gobi Desert of Mongolia[J]. PLoS One,2020,15(9):1-11.
[6]张国斌,李秀芹,佘新松,等. 安徽岭南优势树种(组)生物量特征[J].林业科学,2012,48(5):136-140.
[7]薛春泉,徐期瑚,林丽平,等. 广东主要乡土阔叶树种含年龄和胸径的单木生物量模型[J].林业科学,2019,55(2):97-108.
[8]ZAPATA-CUARTAS M,SIERRA C A,ALLEMAN L. Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass[J]. Forest Ecology & Management,2012,277:173-179.
[9]GREEN E J, STRAWDERMAN W E. A comparison of hierarchical Bayes and empirical Bayes methods [J]. Forest Science, 1992, 38(2):350-366.
[10]GREEN E J, STRAWDERMAN W E. A Bayesian growth and yield model for slash pine plantations[J]. Journal of Applied Statistics,1996,23(2/3):285-299.
[11]CLARK J S, WOLOSIN M, DIETZE M, et al. Tree growth inference and prediction from diameter censuses and ring widths[J]. Ecological Applications,2007,17(7): 1942-1953.
[12]METCALF C J E, MCMAHON S M, CLARK J S. Overcoming data sparseness and parametric constraints in modeling of tree mortality: a new nonparametric Bayesian model[J]. Canadian Journal of Forest Research,2009,39(9): 1677-1687.
[13]张雄清,张建国,段爱国. 基于贝叶斯法估计杉木人工林树高生长模型[J].林业科学,2014,50(3):69-75.
[14]王冬至,张冬燕,李永宁,等. 基于贝叶斯法的针阔混交林树高与胸径混合效应模型[J].林业科学,2019,55(11):85-94.
[15]姚丹丹,徐奇刚,闫晓旺,等. 基于贝叶斯方法的蒙古栎林单木树高-胸径模型[J].南京林业大学学报(自然科学版),2020,44(1):131-137.
[16]FINLEY A O, BANERJEE S, CARLIN B P. spBayes: An R package for univariate and multivariate hierarchical point-referenced spatial models[J]. Journal of Statistical Software, 2007, 19(4):1-24.
[17]王柯人,舒清态,赵洪莹,等. 高山松单木地上生物量模型不确定性研究[J].西南林业大学学报(自然科学),2021,41(2):100-106.
[18]兰洁,肖中琪,李吉玫,等. 天山雪岭云杉生物量分配格局及异速生长模型[J].浙江农林大学学报,2020,37(3):416-423.
[19]王宁. 基于分层贝叶斯分析的城镇登记失业率估计方法[D].天津:天津财经大学,2012.
[20]覃朝勇. 基于层次贝叶斯方法的关键词广告转化率影响因素研究[J].统计与决策,2016(19):64-67.
[21]杨锦涛. 基于层次贝叶斯方法的滑坡易发性评价建模研究[D].成都:西南石油大学,2019.
[22]崔令军,张雄清,段爱国,等. 基于分层贝叶斯法的杉木人工林最大密度线[J].林业科学,2016,52(9):95-102.
[23]姚丹丹,雷相东,张则路. 基于贝叶斯法的长白落叶松林分优势高生长模型研究[J].北京林业大学学报,2015,37(3):94-100.
[24]张继巍,高文龙,秦天燕,等. OpenBUGS软件介绍及应用[J].中国卫生统计,2017,34(1):170-172,176.
[25]DONGSHENG C, XINGZHAO H, XIAOMEI S, et al. A comparison of hierarchical and non-hierarchical Bayesian approaches for fitting allometric larch (Larix.spp.) biomass equations[J]. Forests, 2016, 7(1):18.
[26]姚丹丹,徐奇刚,闫晓旺,等. 基于贝叶斯方法的蒙古栎林单木枯死模型[J].北京林业大学报,2019,41(9):1-8.
[27]黄兴召,王泽夫,徐小牛. 生物量转换因子连续函数的拟合方法比较[J].浙江农林大学报,2017,34(5):775-781.