参考文献/References:
[1]CHENG Y, YANG P, ZHAO L H, et al. Studies on genome size estimation, chromosome number, gametophyte development and plant morphology of salt-tolerant halophyte Suaeda salsa[J]. BMC Plant Biology, 2019,19(1): 473-485.
[2]李建国,濮励杰,朱明,等. 土壤盐渍化研究现状及未来研究热点[J]. 地理学报, 2012,67(9): 1233-1245.
[3]俞仁培,陈德明. 我国盐渍土资源及其开发利用[J]. 土壤通报, 1999,30(4): 3-5.
[4]鲁琳,杨尚谕,刘维东,等. 基于转录组测序花烟草响应盐胁迫活性氧清除相关基因的挖掘[J]. 生物技术通报, 2020,36(12): 42-53.
[5]张永兰,解莉楠. HKT1在植物耐盐机制中的研究进展[J]. 生物技术通报, 2021,37(6): 213-224.
[6]ACOSTA-MOTOS J R, ORTUO M F, BERNAL-VICENTE A, et al. Plant responses to salt stress: adaptive mechanisms[J]. Agronomy, 2017,7(1): 18-56.
[7]王华笑,刘环,杨国平,等. Bacillus amyloliquefaciens YM6对盐胁迫条件下玉米促生长作用研究[J]. 生物技术通报, 2019,35(12): 45-49.
[8]郭伟,薛帅,张哲超,等. 生物技术修复盐碱化草地研究进展[J]. 生物技术通报, 2020,36(7): 200-208.
[9]吴欣欣,白天惠,张乐,等. 泌盐盐生植物的泌盐机理研究进展[J]. 植物生理学报, 2020,56(12): 2526-2532.
[10]WILSON H, MYCOCK D, WEIERSBYE I M. The salt glands of Tamarix usneoides E. Mey. ex Bunge (South African Salt Cedar)[J]. International Journal of Phytoremediation, 2016,19(6): 587-595.
[11]LEI X, TAN B, LIU Z Y, et al. ThCOL2 improves the salt stress tolerance of Tamarix hispida[J]. Frontiers in Plant Science, 2021,12: 1-13.
[12]王培龙,刘中原,张腾倩,等. 刚毛柽柳ThPP2C基因的克隆和表达分析[J]. 植物研究, 2017,37(3): 395-401.
[13]鲁艳,雷加强,曾凡江,等. NaCl处理对多枝柽柳(Tamarix ramosissima)生长及生理的影响[J]. 中国沙漠, 2014,34(6): 1509-1515.
[14]刘咏梅,程聪,姜黎,等. NaCl胁迫下3种柽柳属植物生长、盐离子分布和SOS1基因相对表达量的比较[J]. 植物资源与环境学报, 2019,28(1): 1-9.
[15]祁云霞,刘永斌,荣威恒. 转录组研究新技术:RNA-Seq及其应用[J]. 遗传, 2011,33(11): 1191-1202.
[16]崔凯,吴伟伟,刁其玉. 转录组测序技术的研究和应用进展[J]. 生物技术通报, 2019,35(7): 1-9.
[17]张惠媛,刘永伟,杨军峰,等. 小麦转录因子基因TaWRKY33的耐盐性分析[J]. 中国农业科学, 2018,51(24): 4591-4602.
[18]刘慧洁,徐恒,邱文怡,等. bZIP转录因子在植物生长发育及非生物逆境响应的作用[J]. 浙江农业学报, 2019,31(7): 1205-1214.
[19]田烨,王爽,路正禹,等. 甜菜应答盐胁迫诱导表达bHLH基因的鉴定与分析[J]. 黑龙江大学自然科学学报, 2020,37(6): 712-717.
[20]马彦军,谢军,马瑞,等. NaCl胁迫下黑果枸杞bHLH转录因子家族鉴定与生物信息学分析[J]. 中草药, 2020,51(20): 5311-5319.
[21]潘凌云,马家冀,李建民,等. 植物盐胁迫应答转录因子的研究进展[J]. 生物工程学报, 2022,38(1):50-65.
[22]李君霞,王春义,丁宇涛,等. MYB转录因子在植物耐盐基因工程中的应用进展[J]. 浙江农业学报, 2020,32(10): 1910-1920.
[23]樊艳,王星斗,黄娟娟,等. 杨树ERF、MYB和NAC转录因子家族基因耐盐胁迫表达特性分析[J]. 植物生理学报, 2021,57(8): 1668-1678.
[24]张桐,李智强,伍国强. WRKY转录因子在植物逆境响应中的作用[J]. 生物技术通报, 2021,37(10): 203-215.
[25]ZHANG J, SHI S Z, JIANG Y N, et al. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow (Salix matsudana)[J]. PeerJ, 2021,9: e11076.
[26]LI M, CHEN R, JIANG Q Y, et al. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean[J]. Plant Molecular Biology, 2021,105(3): 333-345.
[27]WANG Y J, ZHANG Y, FAN C J, et al. Genome-wide analysis of MYB transcription factors and their responses to salt stress in Casuarina equisetifolia[J]. BMC Plant Biology, 2021,21(1): 328.
[28]屈兴红,曾洪学. 金冕草(Paspalum notatum)盐胁迫转录组差异性分析[J]. 分子植物育种, 2019,17(11): 3515-3523.
[29]练冬梅,赖正锋,姚运法,等. 黄秋葵盐胁迫下的转录组分析[J]. 中国蔬菜, 2021(6): 42-48.
[30]WANG Y C, GAO C Q, LIANG Y N, et al. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.[J]. Journal of Plant Physiology, 2010,167(3): 222-230.
[31]刘亚菲,张帆,梁卫红. 水稻MAPK级联的功能和作用机制[J]. 中国生物化学与分子生物学报, 2021,37(12):1569-1576.
[32]HAMEL L P, NICOLE M C, SRITUBTIM S, et al. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families[J]. Trends in Plant Science, 2006,11(4): 192-198.
[33]孔祥培,李德全. MAPK和活性氧参与植物抗病防卫反应的信号转导[J]. 植物生理学通讯, 2009,45(1): 73-79.
[34]TEIGE M, SCHEIKL E, EULGEM T, et al. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis[J]. Molecular Cell, 2004,15(1): 141-152.
[35]GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011,29(7): 644-652.
[36]CONESA A, GOTZ S, GARCIA-GOMEZ J M, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005,21(18): 3674-3676.
[37]MAO X, TAO C, OLYARCHUK J G, et al. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary[J]. Bioinformatics, 2005,21(19): 3787-3793.
[38]LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014,15(12): 550.
[39]彭洁,邓孟胜,张杰,等. 马铃薯StSN2的克隆、定位及表达分析[J]. 生物技术通报, 2021,37(5): 11-18.
[40]THOMAS W, EDITH S, ANDREAS G, et al. 454 sequencing put to the test using the complex genome of barley[J]. BioMed Central, 2006,7(1): 275-286.
[41]马彦军,段慧荣,魏佳,等. NaCl胁迫下黑果枸杞转录组测序分析[J]. 生物技术通报, 2020,36(2): 100-109.
[42]ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016,167(2): 313-324.
[43]YAO W J, WANG S J, ZHOU B, et al. Transgenic poplar overexpressing the endogenous transcription factor ERF76 gene improves salinity tolerance.[J]. Tree Physiology, 2016,36(7): 896-908.
[44]HAN D G, ZHANG Z Y, DING H B, et al. Isolation and characterization of MbWRKY2 gene involved in enhanced drought tolerance in transgenic tobacco[J]. Journal of Plant Interactions, 2018,13(1): 163-172.
[45]CHEN F, HU Y, VANNOZZI A, et al. The WRKY transcription factor family in model plants and crops[J]. Critical Reviews in Plant Sciences, 2018,36(5/6): 311-335.
[46]DAI Z, WEI M Y, ZHANG B X, et al. VuWRKY, a group I WRKY gene from Vaccinium uliginosum, confers tolerance to cold and salt stresses in plant[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2021,147(1): 157-168.
[47]WANG Y J, JIANG L, CHEN J Q, et al. Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean[J]. PLoS One, 2018,13(2): e192382.
[48]DU C, ZHAO P P, ZHANG H R, et al. The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis[J]. Journal of Plant Physiology, 2017,215: 48-58.
[49]LIN J H, DANG F F, CHEN Y P, et al. CaWRKY27 negatively regulates salt and osmotic stress responses in pepper[J]. Plant Physiology and Biochemistry, 2019,145: 43-51.
[50]LI Z Y, CHAO J T, LI X X, et al. Systematic analysis of the bZIP family in tobacco and functional characterization of NtbZIP62 involvement in salt stress[J]. Agronomy, 2021,11(1): 148-165.
[51]ZHAO P, YE M H, WANG R Q, et al. Systematic identification and functional analysis of potato (Solanum tuberosum L.) bZIP transcription factors and overexpression of potato bZIP transcription factor StbZIP-65 enhances salt tolerance[J]. International Journal of Biological Macromolecules, 2020,161: 155-167.
[52]HUANG C J, ZHOU J H, JIE Y C, et al. A ramie bZIP transcription factor BnbZIP2 is involved in drought, salt, and heavy metal stress response[J]. DNA and Cell Biology, 2016,35(12): 776-786.
[53]SHEN X J, GUO X W, GUO X, et al. PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance[J]. Plant Physiology and Biochemistry, 2017,112: 302-311.
[54]WEI Q, ZHANG F, SUN F S, et al. A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants[J]. Plant Science, 2017,265: 112-123.
[55]SEO P J, PARK C M. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis[J]. New Phytologist, 2010,186(2): 471-483.
[56]DONG W, GAO T X, WANG Q, et al. Salinity stress induces epigenetic alterations to the promoter of MsMYB4 encoding a salt-induced MYB transcription factor[J]. Plant Physiology and Biochemistry, 2020,155: 709-715.
[57]JIANG X Q, LI S C, DING A Q, et al. The novel rose MYB transcription factor RhMYB96 enhances salt tolerance in Transgenic Arabidopsis[J]. Plant Molecular Biology Reporter, 2018,36(3): 406-417.
[58]JAGODZIK P, TAJDEL-ZIELINSKA M, CIESLA A, et al. Mitogen-activated protein kinase cascades in plant hormone signaling[J]. Frontiers in Plant Science, 2018,9: 1387.
[59]KOMIS G, AMAJOV O, OVECˇKA M, et al. Cell and developmental biology of plant mitogen-activated protein kinases[J]. Annual Review of Plant Biology, 2018,69(1): 237-265.
[60]ZHANG M M, SU J B, ZHANG Y, et al. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense[J]. Current Opinion in Plant Biology, 2018,45: 1-10.
[61]XU J, ZHANG S Q. Mitogen-activated protein kinase cascades in signaling plant growth and development[J]. Trends in Plant Science, 2015,20(1): 56-64.
[62]MENG X Z, ZHANG S Q. MAPK cascades in plant disease resistance signaling[J]. Annual Review of Phytopathology, 2013,51(1): 245-266.
[63]刘璐,刘芸伯,佟佳欣,等. 低温胁迫下牛皮杜鹃MAPK级联参与ABA信号转导的基因表达分析[J].江苏农业科学,2020,48(17):59-65.
[64]岳宁波,李云洲,李玉龙,等. 番茄SlMAPK6基因克隆及其表达特性分析[J].南方农业学报,2020,51(7):1625-1633.
[65]WANG F Z, JING W, ZHANG W H. The mitogen-activated protein kinase cascade MKK1-MPK4 mediates salt signaling in rice[J]. Plant Science, 2014,227: 181-189.
[66]MEHLMER N, WURZINGER B, STAEL S, et al. The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis[J]. The Plant Journal, 2010,63(3): 484-498.
[67]王畅,傅竞也,谌琴琴,等. MAPK级联在玉米抗病反应和植保素代谢调控中的作用分析[J]. 玉米科学, 2018,26(6): 39-44.
[68]黄荣峰,徐通达. 生长素通过MAPK介导的超长链脂肪酸合成调控侧根发育[J]. 植物学报, 2021,56(1): 6-9.
[69]单鸿轩,付畅. 逆境胁迫下植物MAPK级联反应途径研究新进展[J]. 核农学报, 2017,31(4): 680-688.
[70]李悦鹏,张晓兰,于雷,等. MAPK级联途径激酶结构特点及其信号转导途径在园艺作物逆境中的作用[J]. 植物生理学报, 2018,54(8): 1305-1315.
[71]GONG Z, XIONG L, SHI H, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 2020,63(5): 635-674.
[72]苏杰,郭荣起,高阳,等. VHA-c2&c4双基因沉默株系拟南芥对NaCl与ABA的响应[J]. 生物技术通报, 2020,36(7): 48-54.
[73]VISHWAKARMA K, UPADHYAY N, KUMAR N, et al. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects[J]. Frontiers in Plant Science, 2017,8: 161-173.