[1]陈亚辉,张师瑒,杨庆山,等.多枝柽柳叶片响应NaCl胁迫的转录组分析[J].江苏农业学报,2022,38(05):1188-1202.[doi:doi:10.3969/j.issn.1000-4440.2022.05.005]
 CHEN Ya-hui,ZHANG Shi-yang,YANG Qing-shan,et al.Transcriptome analysis of Tamarix ramosissima leaves in response to NaCl stress[J].,2022,38(05):1188-1202.[doi:doi:10.3969/j.issn.1000-4440.2022.05.005]
点击复制

多枝柽柳叶片响应NaCl胁迫的转录组分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年05期
页码:
1188-1202
栏目:
遗传育种·生理生化
出版日期:
2022-10-31

文章信息/Info

Title:
Transcriptome analysis of Tamarix ramosissima leaves in response to NaCl stress
作者:
陈亚辉1张师瑒2杨庆山3宋志忠4姜姜1
(1.南京林业大学林学院,江苏南京210037;2.不列颠哥伦比亚大学理学院,温哥华V6T 1Z4;3.山东省林业科学研究院盐碱地造林试验站,山东济南250000;4.鲁东大学农林工程研究院,山东烟台264039)
Author(s):
CHEN Ya-hui1ZHANG Shi-yang2YANG Qing-shan3SONG Zhi-zhong4JIANG Jiang1
(1.College of Forestry, Nanjing Forestry University, Nanjing 210037, China;2.Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, Canada;3.Saline-alkali Afforestation Experimental Station, Shandong Academy of Forestry Sciences, Jinan 250000, China;4.The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai 264039, China)
关键词:
多枝柽柳NaCl胁迫转录组测序转录因子MAPK信号传导途径
Keywords:
Tamarix ramosissimaNaCl stresstranscriptome sequencingtranscription factorMAPK signal transduction pathway
分类号:
Q753
DOI:
doi:10.3969/j.issn.1000-4440.2022.05.005
文献标志码:
A
摘要:
在转录组层面解析盐生植物多枝柽柳响应盐胁迫的分子机制,为进一步挖掘耐盐关键基因提供参考。用200 mmol/L NaCl处理多枝柽柳0 h、48 h、168 h后,采集叶片进行转录组测序,分析差异表达基因(DEGs)并进行qRT-PCR验证。转录组测序原始数据拼接出Unigenes 105 702个,同时在KEGG、KOG、NR和SwissProt 4大功能数据库中检索到注释的Unigenes为27 670个。NaCl胁迫处理48 h后,多枝柽柳叶片中6 374个基因的表达水平上调,5 380个基因的表达水平下调;NaCl胁迫处理168 h后,叶片中有3 837个基因的表达水平上调,7 808个基因的表达水平下调。根据注释到KEGG 通路中的DEGs,筛选获得8个表达差异极其显著的DEGs,主要编码WRKY和bZIP家族转录因子。此外,由KEGG通路分析可知,MAPK信号转导途径可能参与多枝柽柳生长发育及其对NaCl胁迫的应答反应。本研究通过测定和解析在高盐胁迫下多枝柽柳叶片转录组信息,揭示了盐胁迫激活MAPK信号转导途径以及WRKY、MYB和bZIP等转录因子参与耐盐调控过程,为进一步研究多枝柽柳耐盐分子机制奠定了基础。
Abstract:
To uncover the molecular mechanism of halophyte Tamarix ramosissima (T. ramosissima) in response to salt stress was analyzed at the transcriptome level to provide references for further exploration of key salt-tolerant genes. T. ramosissima plants were treated with 200 mmol/L NaCl for 0 h, 48 h and 168 h, respectively, and the leaves were collected for transcriptome sequencing. The differentially expressed genes (DEGs) were excavated and further verified by qRT-PCR. In total, 105 702 unigenes were spliced from the raw data of transcriptome sequencing, of which 27 670 were retrieved from KEGG, KOG, NR and SwissProt. After 48 hours of NaCl stress treatment, the expression levels of 6 374 genes in T. ramosissima leaves were up-regulated and 5 380 genes were down-regulated. After 168 hours of NaCl stress treatment, the expression levels of 3 837 genes were up-regulated and 7 808 genes were down-regulated. According to the DEGs annotated to the KEGG pathway, eight highly differentially expressed DEGs were obtained, which mainly encoded transcription factors such as WRKY and bZIP families. In addition, the analysis of KEGG pathway showed that MAPK signal transduction pathway may be involved in the growth and development of T. ramosissima and its response to NaCl stress. This research article aims to measure and analyze the transcriptome information of T. ramosissima under high salinity stress conditions. This article also reveals that the salt stress activates the MAPK signal transduction pathway and WRKY, MYB, bZIP and other possible transcription factors involved in the salt tolerance regulation process. This research builds a foundation for future research on transcriptome information of T. ramosissima.

参考文献/References:

[1]CHENG Y, YANG P, ZHAO L H, et al. Studies on genome size estimation, chromosome number, gametophyte development and plant morphology of salt-tolerant halophyte Suaeda salsa[J]. BMC Plant Biology, 2019,19(1): 473-485.
[2]李建国,濮励杰,朱明,等. 土壤盐渍化研究现状及未来研究热点[J]. 地理学报, 2012,67(9): 1233-1245.
[3]俞仁培,陈德明. 我国盐渍土资源及其开发利用[J]. 土壤通报, 1999,30(4): 3-5.
[4]鲁琳,杨尚谕,刘维东,等. 基于转录组测序花烟草响应盐胁迫活性氧清除相关基因的挖掘[J]. 生物技术通报, 2020,36(12): 42-53.
[5]张永兰,解莉楠. HKT1在植物耐盐机制中的研究进展[J]. 生物技术通报, 2021,37(6): 213-224.
[6]ACOSTA-MOTOS J R, ORTUO M F, BERNAL-VICENTE A, et al. Plant responses to salt stress: adaptive mechanisms[J]. Agronomy, 2017,7(1): 18-56.
[7]王华笑,刘环,杨国平,等. Bacillus amyloliquefaciens YM6对盐胁迫条件下玉米促生长作用研究[J]. 生物技术通报, 2019,35(12): 45-49.
[8]郭伟,薛帅,张哲超,等. 生物技术修复盐碱化草地研究进展[J]. 生物技术通报, 2020,36(7): 200-208.
[9]吴欣欣,白天惠,张乐,等. 泌盐盐生植物的泌盐机理研究进展[J]. 植物生理学报, 2020,56(12): 2526-2532.
[10]WILSON H, MYCOCK D, WEIERSBYE I M. The salt glands of Tamarix usneoides E. Mey. ex Bunge (South African Salt Cedar)[J]. International Journal of Phytoremediation, 2016,19(6): 587-595.
[11]LEI X, TAN B, LIU Z Y, et al. ThCOL2 improves the salt stress tolerance of Tamarix hispida[J]. Frontiers in Plant Science, 2021,12: 1-13.
[12]王培龙,刘中原,张腾倩,等. 刚毛柽柳ThPP2C基因的克隆和表达分析[J]. 植物研究, 2017,37(3): 395-401.
[13]鲁艳,雷加强,曾凡江,等. NaCl处理对多枝柽柳(Tamarix ramosissima)生长及生理的影响[J]. 中国沙漠, 2014,34(6): 1509-1515.
[14]刘咏梅,程聪,姜黎,等. NaCl胁迫下3种柽柳属植物生长、盐离子分布和SOS1基因相对表达量的比较[J]. 植物资源与环境学报, 2019,28(1): 1-9.
[15]祁云霞,刘永斌,荣威恒. 转录组研究新技术:RNA-Seq及其应用[J]. 遗传, 2011,33(11): 1191-1202.
[16]崔凯,吴伟伟,刁其玉. 转录组测序技术的研究和应用进展[J]. 生物技术通报, 2019,35(7): 1-9.
[17]张惠媛,刘永伟,杨军峰,等. 小麦转录因子基因TaWRKY33的耐盐性分析[J]. 中国农业科学, 2018,51(24): 4591-4602.
[18]刘慧洁,徐恒,邱文怡,等. bZIP转录因子在植物生长发育及非生物逆境响应的作用[J]. 浙江农业学报, 2019,31(7): 1205-1214.
[19]田烨,王爽,路正禹,等. 甜菜应答盐胁迫诱导表达bHLH基因的鉴定与分析[J]. 黑龙江大学自然科学学报, 2020,37(6): 712-717.
[20]马彦军,谢军,马瑞,等. NaCl胁迫下黑果枸杞bHLH转录因子家族鉴定与生物信息学分析[J]. 中草药, 2020,51(20): 5311-5319.
[21]潘凌云,马家冀,李建民,等. 植物盐胁迫应答转录因子的研究进展[J]. 生物工程学报, 2022,38(1):50-65.
[22]李君霞,王春义,丁宇涛,等. MYB转录因子在植物耐盐基因工程中的应用进展[J]. 浙江农业学报, 2020,32(10): 1910-1920.
[23]樊艳,王星斗,黄娟娟,等. 杨树ERF、MYB和NAC转录因子家族基因耐盐胁迫表达特性分析[J]. 植物生理学报, 2021,57(8): 1668-1678.
[24]张桐,李智强,伍国强. WRKY转录因子在植物逆境响应中的作用[J]. 生物技术通报, 2021,37(10): 203-215.
[25]ZHANG J, SHI S Z, JIANG Y N, et al. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow (Salix matsudana)[J]. PeerJ, 2021,9: e11076.
[26]LI M, CHEN R, JIANG Q Y, et al. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean[J]. Plant Molecular Biology, 2021,105(3): 333-345.
[27]WANG Y J, ZHANG Y, FAN C J, et al. Genome-wide analysis of MYB transcription factors and their responses to salt stress in Casuarina equisetifolia[J]. BMC Plant Biology, 2021,21(1): 328.
[28]屈兴红,曾洪学. 金冕草(Paspalum notatum)盐胁迫转录组差异性分析[J]. 分子植物育种, 2019,17(11): 3515-3523.
[29]练冬梅,赖正锋,姚运法,等. 黄秋葵盐胁迫下的转录组分析[J]. 中国蔬菜, 2021(6): 42-48.
[30]WANG Y C, GAO C Q, LIANG Y N, et al. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.[J]. Journal of Plant Physiology, 2010,167(3): 222-230.
[31]刘亚菲,张帆,梁卫红. 水稻MAPK级联的功能和作用机制[J]. 中国生物化学与分子生物学报, 2021,37(12):1569-1576.
[32]HAMEL L P, NICOLE M C, SRITUBTIM S, et al. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families[J]. Trends in Plant Science, 2006,11(4): 192-198.
[33]孔祥培,李德全. MAPK和活性氧参与植物抗病防卫反应的信号转导[J]. 植物生理学通讯, 2009,45(1): 73-79.
[34]TEIGE M, SCHEIKL E, EULGEM T, et al. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis[J]. Molecular Cell, 2004,15(1): 141-152.
[35]GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011,29(7): 644-652.
[36]CONESA A, GOTZ S, GARCIA-GOMEZ J M, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005,21(18): 3674-3676.
[37]MAO X, TAO C, OLYARCHUK J G, et al. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary[J]. Bioinformatics, 2005,21(19): 3787-3793.
[38]LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014,15(12): 550.
[39]彭洁,邓孟胜,张杰,等. 马铃薯StSN2的克隆、定位及表达分析[J]. 生物技术通报, 2021,37(5): 11-18.
[40]THOMAS W, EDITH S, ANDREAS G, et al. 454 sequencing put to the test using the complex genome of barley[J]. BioMed Central, 2006,7(1): 275-286.
[41]马彦军,段慧荣,魏佳,等. NaCl胁迫下黑果枸杞转录组测序分析[J]. 生物技术通报, 2020,36(2): 100-109.
[42]ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016,167(2): 313-324.
[43]YAO W J, WANG S J, ZHOU B, et al. Transgenic poplar overexpressing the endogenous transcription factor ERF76 gene improves salinity tolerance.[J]. Tree Physiology, 2016,36(7): 896-908.
[44]HAN D G, ZHANG Z Y, DING H B, et al. Isolation and characterization of MbWRKY2 gene involved in enhanced drought tolerance in transgenic tobacco[J]. Journal of Plant Interactions, 2018,13(1): 163-172.
[45]CHEN F, HU Y, VANNOZZI A, et al. The WRKY transcription factor family in model plants and crops[J]. Critical Reviews in Plant Sciences, 2018,36(5/6): 311-335.
[46]DAI Z, WEI M Y, ZHANG B X, et al. VuWRKY, a group I WRKY gene from Vaccinium uliginosum, confers tolerance to cold and salt stresses in plant[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2021,147(1): 157-168.
[47]WANG Y J, JIANG L, CHEN J Q, et al. Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean[J]. PLoS One, 2018,13(2): e192382.
[48]DU C, ZHAO P P, ZHANG H R, et al. The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis[J]. Journal of Plant Physiology, 2017,215: 48-58.
[49]LIN J H, DANG F F, CHEN Y P, et al. CaWRKY27 negatively regulates salt and osmotic stress responses in pepper[J]. Plant Physiology and Biochemistry, 2019,145: 43-51.
[50]LI Z Y, CHAO J T, LI X X, et al. Systematic analysis of the bZIP family in tobacco and functional characterization of NtbZIP62 involvement in salt stress[J]. Agronomy, 2021,11(1): 148-165.
[51]ZHAO P, YE M H, WANG R Q, et al. Systematic identification and functional analysis of potato (Solanum tuberosum L.) bZIP transcription factors and overexpression of potato bZIP transcription factor StbZIP-65 enhances salt tolerance[J]. International Journal of Biological Macromolecules, 2020,161: 155-167.
[52]HUANG C J, ZHOU J H, JIE Y C, et al. A ramie bZIP transcription factor BnbZIP2 is involved in drought, salt, and heavy metal stress response[J]. DNA and Cell Biology, 2016,35(12): 776-786.
[53]SHEN X J, GUO X W, GUO X, et al. PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance[J]. Plant Physiology and Biochemistry, 2017,112: 302-311.
[54]WEI Q, ZHANG F, SUN F S, et al. A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants[J]. Plant Science, 2017,265: 112-123.
[55]SEO P J, PARK C M. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis[J]. New Phytologist, 2010,186(2): 471-483.
[56]DONG W, GAO T X, WANG Q, et al. Salinity stress induces epigenetic alterations to the promoter of MsMYB4 encoding a salt-induced MYB transcription factor[J]. Plant Physiology and Biochemistry, 2020,155: 709-715.
[57]JIANG X Q, LI S C, DING A Q, et al. The novel rose MYB transcription factor RhMYB96 enhances salt tolerance in Transgenic Arabidopsis[J]. Plant Molecular Biology Reporter, 2018,36(3): 406-417.
[58]JAGODZIK P, TAJDEL-ZIELINSKA M, CIESLA A, et al. Mitogen-activated protein kinase cascades in plant hormone signaling[J]. Frontiers in Plant Science, 2018,9: 1387.
[59]KOMIS G, AMAJOV O, OVECˇKA M, et al. Cell and developmental biology of plant mitogen-activated protein kinases[J]. Annual Review of Plant Biology, 2018,69(1): 237-265.
[60]ZHANG M M, SU J B, ZHANG Y, et al. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense[J]. Current Opinion in Plant Biology, 2018,45: 1-10.
[61]XU J, ZHANG S Q. Mitogen-activated protein kinase cascades in signaling plant growth and development[J]. Trends in Plant Science, 2015,20(1): 56-64.
[62]MENG X Z, ZHANG S Q. MAPK cascades in plant disease resistance signaling[J]. Annual Review of Phytopathology, 2013,51(1): 245-266.
[63]刘璐,刘芸伯,佟佳欣,等. 低温胁迫下牛皮杜鹃MAPK级联参与ABA信号转导的基因表达分析[J].江苏农业科学,2020,48(17):59-65.
[64]岳宁波,李云洲,李玉龙,等. 番茄SlMAPK6基因克隆及其表达特性分析[J].南方农业学报,2020,51(7):1625-1633.
[65]WANG F Z, JING W, ZHANG W H. The mitogen-activated protein kinase cascade MKK1-MPK4 mediates salt signaling in rice[J]. Plant Science, 2014,227: 181-189.
[66]MEHLMER N, WURZINGER B, STAEL S, et al. The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis[J]. The Plant Journal, 2010,63(3): 484-498.
[67]王畅,傅竞也,谌琴琴,等. MAPK级联在玉米抗病反应和植保素代谢调控中的作用分析[J]. 玉米科学, 2018,26(6): 39-44.
[68]黄荣峰,徐通达. 生长素通过MAPK介导的超长链脂肪酸合成调控侧根发育[J]. 植物学报, 2021,56(1): 6-9.
[69]单鸿轩,付畅. 逆境胁迫下植物MAPK级联反应途径研究新进展[J]. 核农学报, 2017,31(4): 680-688.
[70]李悦鹏,张晓兰,于雷,等. MAPK级联途径激酶结构特点及其信号转导途径在园艺作物逆境中的作用[J]. 植物生理学报, 2018,54(8): 1305-1315.
[71]GONG Z, XIONG L, SHI H, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 2020,63(5): 635-674.
[72]苏杰,郭荣起,高阳,等. VHA-c2&c4双基因沉默株系拟南芥对NaCl与ABA的响应[J]. 生物技术通报, 2020,36(7): 48-54.
[73]VISHWAKARMA K, UPADHYAY N, KUMAR N, et al. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects[J]. Frontiers in Plant Science, 2017,8: 161-173.

相似文献/References:

[1]王聪,杨恒山,刘艳华,等.NaC1胁迫下外源壳聚糖对菜用大豆叶绿体AsA-GSH循环的影响[J].江苏农业学报,2016,(05):1141.[doi:10.3969/j.issn.1000-4440.2016.05.030]
 WANG Cong,YANG Heng-shan,LIU Yan-hua,et al.Influences of exogenous chitosan on AsA-GSH cycle in vegetable soybean chloroplast under NaCl stress[J].,2016,(05):1141.[doi:10.3969/j.issn.1000-4440.2016.05.030]
[2]顾闽峰,王乃顶,王伟义,等.NaCl胁迫对结球甘蓝幼苗生长及体内离子分布的影响[J].江苏农业学报,2015,(03):638.[doi:10.3969/j.issn.1000-4440.2015.03.028]
 GU Min-feng,WANG Nai-ding,WANG Wei-yi,et al.Growth and ion distribution of NaCl-stressed Brassica oleracea var.capitata seedlings[J].,2015,(05):638.[doi:10.3969/j.issn.1000-4440.2015.03.028]
[3]郭卫珍,张亚利,奉树成.NaCl胁迫对2个山茶品种盐害及叶绿素荧光特性的影响[J].江苏农业学报,2021,(03):562.[doi:doi:10.3969/j.issn.1000-4440.2021.03.003]
 GUO Wei-zhen,ZHANG Ya-li,FENG Shu-cheng.Effects of NaCl stress on salt injury and chlorophyll fluorescence characteristics of two Camellia cultivars[J].,2021,(05):562.[doi:doi:10.3969/j.issn.1000-4440.2021.03.003]

备注/Memo

备注/Memo:
收稿日期:2022-01-20基金项目:山东省农业良种工程项目(2019LZGC009);国家自然科学基金面上项目(32071612);国家留学基金委项目(202108320311)作者简介:陈亚辉(1990-),男,江苏泰州人,博士,助理研究员,研究方向为生态修复。(E-mail)chenyahui01@163.com通讯作者:姜姜, (E-mail)ecologyjiang@gmail.com
更新日期/Last Update: 2022-11-07