[1]严康,马晓宇,杨天宇,等.饲喂高精料日粮的奶牛瘤胃液对瘤胃上皮细胞炎症因子表达量的影响[J].江苏农业学报,2022,38(04):1003-1012.[doi:doi:10.3969/j.issn.1000-4440.2022.04.017]
 YAN Kang,MA Xiao-yu,YANG Tian-yu,et al.Effects of rumen fluid from dairy cows fed high concentrate diet on expression of inflammatory factors in bovine rumen epithelial cells[J].,2022,38(04):1003-1012.[doi:doi:10.3969/j.issn.1000-4440.2022.04.017]
点击复制

饲喂高精料日粮的奶牛瘤胃液对瘤胃上皮细胞炎症因子表达量的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年04期
页码:
1003-1012
栏目:
畜牧兽医·水产养殖
出版日期:
2022-08-31

文章信息/Info

Title:
Effects of rumen fluid from dairy cows fed high concentrate diet on expression of inflammatory factors in bovine rumen epithelial cells
作者:
严康12马晓宇1杨天宇1姜茂成1詹康1赵国琦1
(1.扬州大学动物科学与技术学院,江苏扬州225009;2.江苏省畜牧总站,江苏南京210017)
Author(s):
YAN Kang12MA Xiao-yu1YANG Tian-yu1JIANG Mao-cheng1ZHAN Kang1ZHAO Guo-qi1
(1.School of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;2.Jiangsu Province General Station of Animal Husbandry,Nanjing 210017, China)
关键词:
高精料奶牛瘤胃液瘤胃上皮细胞炎症因子
Keywords:
high concentraterumen fluid of dairy cowsrumen epithelial cellsinflammatory cytokines
分类号:
S823.9
DOI:
doi:10.3969/j.issn.1000-4440.2022.04.017
文献标志码:
A
摘要:
本研究旨在探索饲喂高精料日粮的奶牛瘤胃液对奶牛瘤胃上皮细胞(BRECs)炎症因子基因表达量的影响。利用qRT-PCR等方法,研究饲喂高精料日粮的奶牛瘤胃液对BRECs炎症因子、趋化因子以及抗氧化指标的影响。试验分为2个组:对照组(精粗料比为50∶50)和高精料组(精粗料比为65∶35),各自培养BRECs 6 h,每组设6个重复。结果表明,与对照组相比,高精料组BRECs炎症因子基因IL-1β、IL-6、TNF-α的mRNA表达量显著提高。饲喂高精料日粮的奶牛瘤胃液能显著提高BRECs中CCL2、CCL20、CXCL2、CXCL8、CXCL9基因的mRNA表达量。饲喂高精料日粮的奶牛瘤胃液显著降低TLR2、TLR4基因的mRNA表达量,但并未显著改变CD14、MD2、MyD88基因以及下游信号通路白细胞介素-1受体相关激酶基因IRAK1、TRAF6的mRNA表达量。值得注意的是,饲喂高精料日粮的奶牛瘤胃液显著上调BRECs中PEPT1基因的mRNA表达量(P<0.05),推测PEPT1可能转运饲喂高精料日粮的奶牛瘤胃液中的细菌小肽进入细胞,引起炎症反应。饲喂高精料日粮的奶牛瘤胃液显著提高BRECs中丙二醛(MDA)含量和过氧化氢(H2O2)含量,然而,超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、总抗氧化物质(T-AOC)含量显著降低。说明,饲喂高精料日粮的奶牛瘤胃液能够促进瘤胃上皮细胞的炎症反应并加强免疫应答。此外,饲喂高精料日粮的奶牛瘤胃液对奶牛瘤胃上皮具有损伤作用。
Abstract:
The purpose of this study is to explore the effects of rumen fluid from dairy cows fed high concentrate diet (HCRL) on expression of inflammatory factors in bovine rumen epithelial cells (BRECs). The effect of HCRL on the inflammatory factors, chemokines and antioxidant indices in BRECs was investigated using qRT-PCR. The experiment was divided into two groups: BRECs were cultured for six hours in control group (ratio of concentrate to coarse material was 50∶50) and high concentrate group (ratio of concentrate to coarse material was 65∶35) with six replicates in each group. These results showed that compared with control group, the mRNA expression levels of IL-1β, IL-6 and TNF-α in high concentrate group were significantly increased. In addition, HCRL could significantly enhance the mRNA expression levels of CCL2, CCL20, CXCL2, CXCL8 and CXCL9 in BRECs, and significantly reduce the mRNA expression levels of TLR2 and TLR4, but did not significantly change the mRNA expression levels of CD14, MD2, MyD88, IRAK1 and TRAF6. Notably, the HCRL could significantly enhance the mRNA expression level of PEPT1 in BRECs. It was suggested that PEPT1 may transport the small bacterial peptides into the cells, resulting in inflammatory response. Rumen fluid from dairy cows fed high concentrate diet significantly increased malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content in BRECs. However, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) and total antioxidant capacity(T-AOC) were significantly reduced. The results indicate that the HCRL can promote the inflammation response of rumen epithelial cells and strengthen the immune response. In addition, the HCRL has a damaging effect on the rumen epithelium of dairy cows.

参考文献/References:

[1]STEELE M A, ALZAHAL O, HOOK S E, et al. Ruminal acidosis and the rapid onset of ruminal parakeratosis in a mature dairy cow: a case report [J].Acta Veterinaria Scandinavica, 2009, 51(1): 39.
[2]STEELE M A, CROOM J, KAHLER M, et al. Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis[J]. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 2011, 300(6): R1515-R1523.
[3]STEELE M A, GREENWOOD S L, CROOM J, et al. An increase in dietary non-structural carbohydrates alters the structure and metabolism of the rumen epithelium in lambs [J]. Canadian Journal of Plant Science, 2012, 92(2): 123-130.
[4]PLAIZIER J C, KHAFIPOUR E, LI S, et al. Subacute ruminal acidosis (SARA), endotoxins and health consequences [J]. Animal Feed Science and Technology, 2012, 172(1): 9-21.
[5]LIU J H, XU T T, LIU Y J, et al. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats [J]. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 2013, 305(3): 232-241.
[6]KLEEN J L, HOOIJER G A, REHAGE J, et al. Subacute ruminal acidosis (SARA): a review [J].Journal of Veterinary Medicine a Physiology Pathology Clinical Medicine, 2003, 50(8): 406.
[7]NORDLUND K V, GARRETT E F. Rumenocentesis: A technique for collecting rumen fluid for the diagnosis of subacute rumen acidosis in dairy herds [J].The Bovine Practitioner, 1994, 15(2): 14-16.
[8]DUFFIELD T, PLAIZIER J C, FAIRFIELD A, et al. Comparison of techniques for measurement of rumen pH in lactating dairy cows [J]. Journal of Dairy Science, 2004, 87(1): 59-66.
[9]KRAUSE K M, OETZEL G R. Understanding and preventing subacute ruminal acidosis in dairy herds: a review [J]. Animal Feed Science & Technology, 2006, 126(3/4): 215-236.
[10]DENNIS C K, PENNER G B. Effects of a proinflammatory response on metabolic function of cultured, primary ruminal epithelial cells [J]. Journal of Dairy Science, 2021, 104(1): 1002-1017.
[11]MEDZHITOV R, PRESTON H, JANEWAY C. A human homologue of the drosophila toll protein signals activation of adaptive immunity [J]. Nature, 1997, 388(6640): 394-397.
[12]TAKEUCHI O, HOSHINO K, KAWAI T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components [J]. Immunity, 1999, 11(4): 443-451.
[13]ALEXOPOULOU L, HOLT A C, MEDZHITOV R, et al. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3 [J]. Nature, 2001, 413(6857):732-738.
[14]ZHANG F X, KIRSCHNING C J, MANCINELLI R, et al. Bacterial lipopolysaccharide activates nuclear factor-κB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes [J].Journal of Biological Chemistry, 1999, 274(12): 7611-7614.
[15]HORNG T, BARTON G M, MEDZHITOV R. TIRAP: an adapter molecule in the Toll signaling pathway [J]. Nature Immunology, 2001, 2(9): 835-841.
[16]OSHIUMI H, MATSUMOTO M, FUNAMI K, et al. An adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction [J]. Nature Immunology, 2003, 4(2): 161-167.
[17]SUZUKI N, SUZUKI S, DUNCAN G S, et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4[J]. Nature, 2002, 416(6882): 750-756.
[18]IRIE T, MUTA T, TAKESHIGE K. TAK1 mediates an activation signal from Toll-like receptor(s) to nuclear factor-κB in lipopolysaccharide-stimulated macrophages [J]. Febs Letters, 2000, 467(2/3): 160-164.
[19]CHARRIER L, DRISS A, YAN Y, et al. hPepT1 mediates bacterial tripeptide fMLP uptake in human monocytes [J]. Laboratory Investigation, 2006, 86: 490-503.
[20]DALMASSO G, NGUYEN H, CHARRIER-HISAMUDDIN L, et al. PEPT1 mediates transport of the proinflammatory bacterial tripeptide L-Ala-γ-D-Glu-meso-DAP in intestinal epithelial cells [J]. American Journal of Physiology Gastrointestinal & Liver Physiology, 2010, 299(3): 687-696.
[21]MERLIN D, STEEL A, GEWIRTZ A T, et al. PEPT1-mediated epithelial transport of bacteria-derived chemotactic peptides enhances neutrophil-epithelial interactions [J]. Journal of Clinical Investigation, 1998, 102(11): 2011-2018.
[22]BUYSE M, TSOCAS A, WALKER F, et al. PEPT1-mediated fMLP transport induces intestinal inflammation in vivo[J]. American Journal of Physiology Cell Physiology, 2002, 283(6): C1795- C1800.
[23]VAVRICKA S R, MUSCH M W, CHANG J E, et al. PEPT1 transports muramyl dipeptide, activating NF-κB and stimulating IL-8 secretion in human colonic Caco2/bbe cells [J]. Gastroenterology, 2004, 127(5): 1401-1409.
[24]GIRARDIN S E, BONECA I G, VIALA J, et al. NOD2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection [J]. Journal of Biological Chemistry, 2003, 278(11): 8869-8872.
[25]KOBAYASHI K, INOHARA N, HERNANDEZ L D, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems [J]. Nature, 2002, 416(6877): 194-199.
[26]PARK J H, KIM Y G, MCDONALD C, et al. RICK/RIP2 mediates innate immune responses induced through NOD1 and NOD2 but not TLRs [J]. The Journal of Immunology, 2007, 178(4): 2380-2386.
[27]詹康. SCFAs通过GPR41调控奶牛瘤胃上皮细胞炎症反应的研究 [D].扬州: 扬州大学,2017.
[28]AMETAJ B N, ZEBELI Q, SALEEM F, et al. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows [J]. Metabolomics, 2010, 6(4): 583-594.
[29]HOOK S E, STEELE M A, NORTHWOOD K S, et al. Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows [J]. Fems Microbiology Ecology, 2011,78(2): 275-284.
[30]GUO J, CHANG G, ZHANG K, et al. Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet [J]. Oncotarget, 2017, 8(29):46769-46780.
[31]MAO S Y, ZHANG R Y, WANG D S, et al. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing [J]. Anaerobe, 2013, 24: 12-19.
[32]MACKIE R I, GILCHRIST F. Changes in lactate-producing and lactate-utilizing bacteria in relation to pH in the rumen of sheep during stepwise adaptation to a high-concentrate diet [J]. Applied and Environmental Microbiology, 1979, 38(3): 422-430.
[33]GOAD D W, GOAD C L, NAGARAJA T G. Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers [J]. Journal of Animal Science, 1998, 76(1): 234-241.
[34]ZHANG R, ZHU W, MAO S, et al. High-concentrate feeding upregulates the expression of inflammation-related genes in the ruminal epithelium of dairy cattle [J]. Journal of Animal Science and Biotechnology, 2016, 7: 599-611.
[35]AGLE M, HRISTOV A N, ZAMAN S, et al. Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows [J]. Journal of Dairy Science, 2010, 93(9): 4211-4222.
[36]UPPAL S K, WOLF K, MARTENS H. The effect of short chain fatty acids on calcium flux rates across isolated rumen epithelium of hay-fed and concentrate-fed sheep [J]. Journal of Animal Physiology and Animal Nutrition, 2003, 87(1/2): 12-20.
[37]LEONHARD S, BECKER G, BREVES G, et al. Chloride, gluconate, sulfate, and short-chain fatty acids affect calcium flux rates across the sheep forestomach epithelium [J]. Journal of Dairy Science, 2007, 90(3): 1516-1526.
[38]OGATA T, KIM Y H, MASAKI T, et al. Effects of an increased concentrate diet on rumen pH and the bacterial community in Japanese black beef cattle at different fattening stages [J]. The Journal of Veterinary Medical Science, 2019, 81(7): 968-974.
[39]PLAIZIER J C, KRAUSE D O, GOZHO G N, et al. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences [J]. Veterinary Journal, 2008, 176(1): 21-31.
[40]JAMES C M, JAN C P, MICHAEL A S, et al. Butyrate-mediated genomic changes involved in non-specific host defenses, matrix remodeling and the immune response in the rumen epithelium of cows afflicted with subacute ruminal acidosis [J]. American Journal of Animal & Veterinary Sciences, 2013, 128(23): 89-115.
[41]GOZHO G N, KRAUSE D O, PLAIZIER J C. Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows [J]. Journal of Dairy Science, 2007, 90(2): 856-866.
[42]KHAFIPOUR E, KRAUSE D O, PLAIZIER J C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation [J]. Journal of Dairy Science, 2009, 92(3): 1060-1070.
[43]EMMANUEL D, MADSEN K L, CHURCHILL T A, et al. Acidosis and lipopolysaccharide from Escherichia coli B:055 cause hyperpermeability of rumen and colon tissues [J]. Journal of Dairy Science, 2007, 90(12): 5552-5557.
[44]YOSUKE K, YOSHIYUKI G, HIROSHI K. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation [J].European Journal of Immunology, 2013, 43(12): 3108-3115.
[45]MANI V, WEBER T, BAUMGARD L, et al. Growth and development symposium: endotoxin, inflammation, and intestinal function in livestock [J]. Journal of Animal Science, 2012, 90(5): 1452-1465.
[46]CHANG P, HAO L, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(6): 2247-2252.
[47]TEBBUTT N C, GIRAUD A S, INGLESE M, et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice [J]. Nature Medicine, 2002, 8(10): 1089-1097.
[48]AKDIS M, BURGLER S, CRAMERI R, et al. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases [J]. Journal of Allergy & Clinical Immunology, 2011, 127(3): 701-721.
[49]EMING S A, KRIEG T, DAVIDSON J M. Inflammation in wound repair: molecular and cellular mechanisms [J]. Journal of Investigative Dermatology, 2007, 127(3): 514-525.
[50]NOMIYAMA H, OSADA N, YOSHIE O. The evolution of mammalian chemokine genes [J]. Cytokine Growth Factor Reviews, 2010, 21(4): 253-262.
[51]HUGHES C E, NIBBS R. A guide to chemokines and their receptors [J]. FEBS Journal, 2018, 285(16): 2944-2971.
[52]ROBERTS T K, EUGENIN E A, LOPEZ L, et al. CCL2 disrupts the adherens junction: implications for neuroinflammation [J]. Laboratory Investigation; a Journal of Technical Methods and Pathology, 2012, 92(8): 1213-1233.
[53]PAUL C, MICHELLE L M, MARTNEZ M L, et al. Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4[J]. The FASEB Journal, 2017, 31(7): 3084-3097.
[54]LU J, CHATTERJEE M, SCHMID H, et al. CXCL14 as an emerging immune and inflammatory modulator [J]. Journal of Inflammation, 2016, 13: 1.
[55]PAN Y, WONG E A, BLOOMQUIST J R, et al. Expression of a cloned ovine gastrointestinal peptide transporter (PEPT1) in xenopus oocytes induces uptake of oligopeptides in vitro [J]. Journal of Nutrition, 2001, 131(4): 1264-1270.
[56]STROBER W, FUSS I J. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases [J]. Gastroenterology, 2011, 140(6): 1756-1767.
[57]HONJO H, WATANABE T, KAMATA K, et al. RIPK2 as a new therapeutic target in inflammatory bowel diseases [J]. Frontiers in Pharmacology, 2021, 12: 650403.
[58]USLUOGLU N, PAVLOVIC J, MOELLING K, et al. RIP2 mediates LPS-induced p38 and ikappaBalpha signaling including IL-12 p40 expression in human monocyte-derived dendritic cells [J]. European Journal of Immunology, 2007, 37(8): 2317.
[59]耿雅丽,田平,罗燕文,等. 高精料对泌乳奶山羊瘤胃上皮氧化应激和胆固醇代谢的影响 [J]. 草业学报, 2017, 26(11): 94-103.
[60]高爱保. 草甘膦对黑斑蛙主要器官中抗氧化酶的影响[J].江苏农业科学,2020,48(1):278-281.
[61]吴晓雲,陈叶雨,赖见生,等. 饥饿复投喂对长江鲟肝脏、肠道和肌肉抗氧化功能的影响[J].南方农业学报,2021,52(11):3157-3165.
[62]李浩,陈亚平,鲁智慧,等. 草地贪夜蛾和斜纹夜蛾幼虫体内保护酶及解毒酶对2种杀虫剂的响应比较[J].南方农业学报,2021,52(3):559-569.
[63]CUI J J, YUAN J F, ZHANG Z Q. Anti-oxidation activity of the crude polysaccharides isolated from Polygonum cillinerve (Nakai) ohwi in immunosuppressed mice [J]. Journal of Ethnopharmacology, 2010, 132(2): 512-517.

相似文献/References:

[1]孟梅娟,涂远璐,白云峰,等.饲粮中补饲非常规饲料对育肥羊屠宰性能、血液生化指标及肉品质的影响[J].江苏农业学报,2018,(02):390.[doi:doi:10.3969/j.issn.1000-4440.2018.02.024]
 MENG Mei-juan,TU Yuan-lu,BAI Yun-feng,et al.Effects of supplementary feeding with un-conventional feeds on slaughter performance, blood biochemical index and meat quality in fattening goats[J].,2018,(04):390.[doi:doi:10.3969/j.issn.1000-4440.2018.02.024]

备注/Memo

备注/Memo:
收稿日期:2022-06-06基金项目:国家自然科学基金项目(31972589);国家现代农业产业技术体系资助项目(CARS36) 作者简介:严康(1985-),男,江苏南京人,博士研究生,高级畜牧师,主要从事动物营养与饲料研究。(E-mail)yankang97822@163.com通讯作者:赵国琦,(E-mail)gqzhao@yzu.edu.cn
更新日期/Last Update: 2022-09-06