参考文献/References:
[1]STEELE M A, ALZAHAL O, HOOK S E, et al. Ruminal acidosis and the rapid onset of ruminal parakeratosis in a mature dairy cow: a case report [J].Acta Veterinaria Scandinavica, 2009, 51(1): 39.
[2]STEELE M A, CROOM J, KAHLER M, et al. Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis[J]. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 2011, 300(6): R1515-R1523.
[3]STEELE M A, GREENWOOD S L, CROOM J, et al. An increase in dietary non-structural carbohydrates alters the structure and metabolism of the rumen epithelium in lambs [J]. Canadian Journal of Plant Science, 2012, 92(2): 123-130.
[4]PLAIZIER J C, KHAFIPOUR E, LI S, et al. Subacute ruminal acidosis (SARA), endotoxins and health consequences [J]. Animal Feed Science and Technology, 2012, 172(1): 9-21.
[5]LIU J H, XU T T, LIU Y J, et al. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats [J]. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 2013, 305(3): 232-241.
[6]KLEEN J L, HOOIJER G A, REHAGE J, et al. Subacute ruminal acidosis (SARA): a review [J].Journal of Veterinary Medicine a Physiology Pathology Clinical Medicine, 2003, 50(8): 406.
[7]NORDLUND K V, GARRETT E F. Rumenocentesis: A technique for collecting rumen fluid for the diagnosis of subacute rumen acidosis in dairy herds [J].The Bovine Practitioner, 1994, 15(2): 14-16.
[8]DUFFIELD T, PLAIZIER J C, FAIRFIELD A, et al. Comparison of techniques for measurement of rumen pH in lactating dairy cows [J]. Journal of Dairy Science, 2004, 87(1): 59-66.
[9]KRAUSE K M, OETZEL G R. Understanding and preventing subacute ruminal acidosis in dairy herds: a review [J]. Animal Feed Science & Technology, 2006, 126(3/4): 215-236.
[10]DENNIS C K, PENNER G B. Effects of a proinflammatory response on metabolic function of cultured, primary ruminal epithelial cells [J]. Journal of Dairy Science, 2021, 104(1): 1002-1017.
[11]MEDZHITOV R, PRESTON H, JANEWAY C. A human homologue of the drosophila toll protein signals activation of adaptive immunity [J]. Nature, 1997, 388(6640): 394-397.
[12]TAKEUCHI O, HOSHINO K, KAWAI T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components [J]. Immunity, 1999, 11(4): 443-451.
[13]ALEXOPOULOU L, HOLT A C, MEDZHITOV R, et al. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3 [J]. Nature, 2001, 413(6857):732-738.
[14]ZHANG F X, KIRSCHNING C J, MANCINELLI R, et al. Bacterial lipopolysaccharide activates nuclear factor-κB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes [J].Journal of Biological Chemistry, 1999, 274(12): 7611-7614.
[15]HORNG T, BARTON G M, MEDZHITOV R. TIRAP: an adapter molecule in the Toll signaling pathway [J]. Nature Immunology, 2001, 2(9): 835-841.
[16]OSHIUMI H, MATSUMOTO M, FUNAMI K, et al. An adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction [J]. Nature Immunology, 2003, 4(2): 161-167.
[17]SUZUKI N, SUZUKI S, DUNCAN G S, et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4[J]. Nature, 2002, 416(6882): 750-756.
[18]IRIE T, MUTA T, TAKESHIGE K. TAK1 mediates an activation signal from Toll-like receptor(s) to nuclear factor-κB in lipopolysaccharide-stimulated macrophages [J]. Febs Letters, 2000, 467(2/3): 160-164.
[19]CHARRIER L, DRISS A, YAN Y, et al. hPepT1 mediates bacterial tripeptide fMLP uptake in human monocytes [J]. Laboratory Investigation, 2006, 86: 490-503.
[20]DALMASSO G, NGUYEN H, CHARRIER-HISAMUDDIN L, et al. PEPT1 mediates transport of the proinflammatory bacterial tripeptide L-Ala-γ-D-Glu-meso-DAP in intestinal epithelial cells [J]. American Journal of Physiology Gastrointestinal & Liver Physiology, 2010, 299(3): 687-696.
[21]MERLIN D, STEEL A, GEWIRTZ A T, et al. PEPT1-mediated epithelial transport of bacteria-derived chemotactic peptides enhances neutrophil-epithelial interactions [J]. Journal of Clinical Investigation, 1998, 102(11): 2011-2018.
[22]BUYSE M, TSOCAS A, WALKER F, et al. PEPT1-mediated fMLP transport induces intestinal inflammation in vivo[J]. American Journal of Physiology Cell Physiology, 2002, 283(6): C1795- C1800.
[23]VAVRICKA S R, MUSCH M W, CHANG J E, et al. PEPT1 transports muramyl dipeptide, activating NF-κB and stimulating IL-8 secretion in human colonic Caco2/bbe cells [J]. Gastroenterology, 2004, 127(5): 1401-1409.
[24]GIRARDIN S E, BONECA I G, VIALA J, et al. NOD2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection [J]. Journal of Biological Chemistry, 2003, 278(11): 8869-8872.
[25]KOBAYASHI K, INOHARA N, HERNANDEZ L D, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems [J]. Nature, 2002, 416(6877): 194-199.
[26]PARK J H, KIM Y G, MCDONALD C, et al. RICK/RIP2 mediates innate immune responses induced through NOD1 and NOD2 but not TLRs [J]. The Journal of Immunology, 2007, 178(4): 2380-2386.
[27]詹康. SCFAs通过GPR41调控奶牛瘤胃上皮细胞炎症反应的研究 [D].扬州: 扬州大学,2017.
[28]AMETAJ B N, ZEBELI Q, SALEEM F, et al. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows [J]. Metabolomics, 2010, 6(4): 583-594.
[29]HOOK S E, STEELE M A, NORTHWOOD K S, et al. Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows [J]. Fems Microbiology Ecology, 2011,78(2): 275-284.
[30]GUO J, CHANG G, ZHANG K, et al. Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet [J]. Oncotarget, 2017, 8(29):46769-46780.
[31]MAO S Y, ZHANG R Y, WANG D S, et al. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing [J]. Anaerobe, 2013, 24: 12-19.
[32]MACKIE R I, GILCHRIST F. Changes in lactate-producing and lactate-utilizing bacteria in relation to pH in the rumen of sheep during stepwise adaptation to a high-concentrate diet [J]. Applied and Environmental Microbiology, 1979, 38(3): 422-430.
[33]GOAD D W, GOAD C L, NAGARAJA T G. Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers [J]. Journal of Animal Science, 1998, 76(1): 234-241.
[34]ZHANG R, ZHU W, MAO S, et al. High-concentrate feeding upregulates the expression of inflammation-related genes in the ruminal epithelium of dairy cattle [J]. Journal of Animal Science and Biotechnology, 2016, 7: 599-611.
[35]AGLE M, HRISTOV A N, ZAMAN S, et al. Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows [J]. Journal of Dairy Science, 2010, 93(9): 4211-4222.
[36]UPPAL S K, WOLF K, MARTENS H. The effect of short chain fatty acids on calcium flux rates across isolated rumen epithelium of hay-fed and concentrate-fed sheep [J]. Journal of Animal Physiology and Animal Nutrition, 2003, 87(1/2): 12-20.
[37]LEONHARD S, BECKER G, BREVES G, et al. Chloride, gluconate, sulfate, and short-chain fatty acids affect calcium flux rates across the sheep forestomach epithelium [J]. Journal of Dairy Science, 2007, 90(3): 1516-1526.
[38]OGATA T, KIM Y H, MASAKI T, et al. Effects of an increased concentrate diet on rumen pH and the bacterial community in Japanese black beef cattle at different fattening stages [J]. The Journal of Veterinary Medical Science, 2019, 81(7): 968-974.
[39]PLAIZIER J C, KRAUSE D O, GOZHO G N, et al. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences [J]. Veterinary Journal, 2008, 176(1): 21-31.
[40]JAMES C M, JAN C P, MICHAEL A S, et al. Butyrate-mediated genomic changes involved in non-specific host defenses, matrix remodeling and the immune response in the rumen epithelium of cows afflicted with subacute ruminal acidosis [J]. American Journal of Animal & Veterinary Sciences, 2013, 128(23): 89-115.
[41]GOZHO G N, KRAUSE D O, PLAIZIER J C. Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows [J]. Journal of Dairy Science, 2007, 90(2): 856-866.
[42]KHAFIPOUR E, KRAUSE D O, PLAIZIER J C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation [J]. Journal of Dairy Science, 2009, 92(3): 1060-1070.
[43]EMMANUEL D, MADSEN K L, CHURCHILL T A, et al. Acidosis and lipopolysaccharide from Escherichia coli B:055 cause hyperpermeability of rumen and colon tissues [J]. Journal of Dairy Science, 2007, 90(12): 5552-5557.
[44]YOSUKE K, YOSHIYUKI G, HIROSHI K. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation [J].European Journal of Immunology, 2013, 43(12): 3108-3115.
[45]MANI V, WEBER T, BAUMGARD L, et al. Growth and development symposium: endotoxin, inflammation, and intestinal function in livestock [J]. Journal of Animal Science, 2012, 90(5): 1452-1465.
[46]CHANG P, HAO L, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(6): 2247-2252.
[47]TEBBUTT N C, GIRAUD A S, INGLESE M, et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice [J]. Nature Medicine, 2002, 8(10): 1089-1097.
[48]AKDIS M, BURGLER S, CRAMERI R, et al. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases [J]. Journal of Allergy & Clinical Immunology, 2011, 127(3): 701-721.
[49]EMING S A, KRIEG T, DAVIDSON J M. Inflammation in wound repair: molecular and cellular mechanisms [J]. Journal of Investigative Dermatology, 2007, 127(3): 514-525.
[50]NOMIYAMA H, OSADA N, YOSHIE O. The evolution of mammalian chemokine genes [J]. Cytokine Growth Factor Reviews, 2010, 21(4): 253-262.
[51]HUGHES C E, NIBBS R. A guide to chemokines and their receptors [J]. FEBS Journal, 2018, 285(16): 2944-2971.
[52]ROBERTS T K, EUGENIN E A, LOPEZ L, et al. CCL2 disrupts the adherens junction: implications for neuroinflammation [J]. Laboratory Investigation; a Journal of Technical Methods and Pathology, 2012, 92(8): 1213-1233.
[53]PAUL C, MICHELLE L M, MARTNEZ M L, et al. Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4[J]. The FASEB Journal, 2017, 31(7): 3084-3097.
[54]LU J, CHATTERJEE M, SCHMID H, et al. CXCL14 as an emerging immune and inflammatory modulator [J]. Journal of Inflammation, 2016, 13: 1.
[55]PAN Y, WONG E A, BLOOMQUIST J R, et al. Expression of a cloned ovine gastrointestinal peptide transporter (PEPT1) in xenopus oocytes induces uptake of oligopeptides in vitro [J]. Journal of Nutrition, 2001, 131(4): 1264-1270.
[56]STROBER W, FUSS I J. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases [J]. Gastroenterology, 2011, 140(6): 1756-1767.
[57]HONJO H, WATANABE T, KAMATA K, et al. RIPK2 as a new therapeutic target in inflammatory bowel diseases [J]. Frontiers in Pharmacology, 2021, 12: 650403.
[58]USLUOGLU N, PAVLOVIC J, MOELLING K, et al. RIP2 mediates LPS-induced p38 and ikappaBalpha signaling including IL-12 p40 expression in human monocyte-derived dendritic cells [J]. European Journal of Immunology, 2007, 37(8): 2317.
[59]耿雅丽,田平,罗燕文,等. 高精料对泌乳奶山羊瘤胃上皮氧化应激和胆固醇代谢的影响 [J]. 草业学报, 2017, 26(11): 94-103.
[60]高爱保. 草甘膦对黑斑蛙主要器官中抗氧化酶的影响[J].江苏农业科学,2020,48(1):278-281.
[61]吴晓雲,陈叶雨,赖见生,等. 饥饿复投喂对长江鲟肝脏、肠道和肌肉抗氧化功能的影响[J].南方农业学报,2021,52(11):3157-3165.
[62]李浩,陈亚平,鲁智慧,等. 草地贪夜蛾和斜纹夜蛾幼虫体内保护酶及解毒酶对2种杀虫剂的响应比较[J].南方农业学报,2021,52(3):559-569.
[63]CUI J J, YUAN J F, ZHANG Z Q. Anti-oxidation activity of the crude polysaccharides isolated from Polygonum cillinerve (Nakai) ohwi in immunosuppressed mice [J]. Journal of Ethnopharmacology, 2010, 132(2): 512-517.