参考文献/References:
[1]ZHUANG K J, WU N, WANG X C, et al. Effects of 3 feeding modes on the volatile and nonvolatile compounds in the edible tissues of female Chinese mitten crab (Eriocheir sinensis)[J]. Journal of Food Science, 2016, 81(4):968-981.
[2]WANG S, HE Y, WANG Y Y, et al. Comparison of flavour qualities of three sourced Eriocheir sinensis[J]. Food Chemistry, 2016, 200:24-31.
[3]农业农村部渔业渔政管理局. 中国渔业统计年鉴[J]. 北京: 中国农业出版社, 2020.
[4]段青玲,刘怡然,周新辉,等. 大闸蟹养殖大数据分析模型和应用进展[J]. 农业大数据学报, 2021, 3(1):56-65.
[5]WANG Q D, LIU J S, ZHANG S Y, et al. Sustainable farming practices of the Chinese mitten crab (Eriocheir sinensis) around Hongze Lake, lower Yangtze River Basin, China[J]. Ambio, 2016, 45(3):361-373.
[6]王海候,金梅娟,沈明星,等. 螺蛳对蟹塘产量、水质的影响及其适宜投喂量研究[J]. 水产科技情报, 2016, 43(1):37-40.
[7]叶乐,林黑着,李卓佳,等. 投喂频率对凡纳滨对虾生长和水质的影响[J]. 南方水产, 2005, 1(4):55-59.
[8]潘杰,吴旭干,赵恒亮,等. 三种投喂模式对河蟹二龄成蟹养殖性能的影响[J]. 淡水渔业, 2016, 46(2):87-93.
[9]HE J, WU X G, LI J Y, et al. Comparison of the culture performance and profitability of wild-caught and captive pond-reared Chinese mitten crab (Eriocheir sinensis) juveniles reared in grow-out ponds: implications for seed selection and genetic selection programs[J]. Aquaculture, 2014, 434:48-56.
[10]阙有清,杨志刚,纪连元,等. 配合饲料替代杂鱼对中华绒螯蟹生长发育、体成分及脂肪酸组成的影响[J]. 水产学报, 2012, 36(10):1612-1623.
[11]LONG X, SUN Y, WADE N M, et al. Key metabolic and enzymatic adaptations underlie the benefits of formulated diets in the adult female Chinese mitten crab Eriocheir sinensis[J]. Aquaculture Research, 2020, 51(12):5125-5140.
[12]SUN M, HASSAN S G, LI D. Models for estimating feed intake in aquaculture: a review[J]. Computers and Electronics in Agriculture, 2016, 127:425-438.
[13]CUI Y, MA Q, LIMBU S M, et al. Effects of dietary protein to energy ratios on growth, body composition and digestive enzyme activities in Chinese mitten-handed crab, Eriocheir sinensis[J]. Aquaculture Research, 2016, 48(5):2243-2252.
[14]任妮,鲍彤,刘杨,等. 基于粒子群优化算法和长短时记忆神经网络的蟹塘溶解氧预测[J]. 江苏农业学报, 2021, 37(2):426-434.
[15]樊宇星,任妮,田港陆,等. 基于DeepAR-RELM的池塘溶解氧时空预测方法研究[J]. 农业机械学报, 2020, 51(S1):405-412.
[16]XU L, LIU S, LI D. Prediction of water temperature in prawn cultures based on a mechanism model optimized by an improved artificial bee colony[J]. Computers and Electronics in Agriculture, 2017, 140:397-408.
[17]BARZEGAR R, AALAMI M T, ADAMOWSKI J. Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(2):415-433.
[18]徐龙琴,李乾川,刘双印,等. 基于集合经验模态分解和人工蜂群算法的工厂化养殖pH值预测[J]. 农业工程学报, 2016, 32(3):202-209.
[19]XU Z, BOYD C E. Reducing the monitoring parameters of fish pond water quality[J]. Aquaculture, 2016, 465:359-366.
[20]BOYD C E. Water quality: an introduction [M]. 2nd ed. New York: Springer, 2015.
[21]杨朦朦. 池塘养殖精准投喂量投饵机的研究[D]. 上海: 上海海洋大学, 2018.
[22]吴强泽. 池塘养殖智能投饲系统的研究[D]. 南京: 南京农业大学, 2016.
[23]饶毅,徐先栋,丁立云,等. 不同饲料投喂量下生物絮团技术对草鱼养殖及水质的影响[J]. 湖南农业科学, 2020, 4:51-54, 57.
[24]GASPARRINI A, ARMSTRONG B, KENWARD M G. Distributed lag non-linear models[J]. Statistics in Medicine, 2010, 29(21):2224-2234.
[25]张克兴. 基于分布滞后非线性模型分析PM2.5对循环系统疾病寿命损失影响[D]. 北京: 中国疾病预防控制中心, 2018.
[26]黄照,刘涛,许燕君,等. 基于死亡数据用DLNM构建气象健康指数[J]. 环境卫生学杂志, 2018, 8(5):368-373,380.
[27]谷少华,贺天锋,陆蓓蓓,等. 基于分布滞后非线性模型的归因风险评估方法及应用[J]. 中国卫生统计, 2016, 33(6):959-962.
[28]GASPARRINI A. Distributed lag linear and non-linear models in R: The package dlnm[J]. Journal of Statistical Software, 2011, 43(8):1-20.
[29]吴桂亮. 蟹池水浑因投喂量不足[N]. 江苏农业科技报, 2007-09-08(6).
[30]CHEN Y, YU H, CHENG Y, et al. A hybrid intelligent method for three-dimensional short-term prediction of dissolved oxygen content in aquaculture[J]. PLoS One, 2018, 13(2):e0192456.
[31]CHEN Y L, CHEN L Q, QIN J G, et al. Growth and immune response of Chinese mitten crab (Eriocheir sinensis) fed diets containing different lipid sources[J]. Aquaculture Research, 2016, 47(6):1984-1995.
[32]CAO X K, REN N, TIAN G L, et al. A three-dimensional prediction method of dissolved oxygen in pond culture based on Attention-GRU-GBRT[J]. Computers and Electronics in Agriculture, 2021, 181:105955.