[1]沈旺鑫,史小品,杜海波,等.水稻类病斑突变体基因克隆及发生机制研究进展[J].江苏农业学报,2022,38(03):837-848.[doi:doi:10.3969/j.issn.1000-4440.2022.03.032]
 SHEN Wang-xin,SHI Xiao-pin,DU Hai-bo,et al.Research advances in gene cloning and occurrence mechanism of rice lesion mimic mutants[J].,2022,38(03):837-848.[doi:doi:10.3969/j.issn.1000-4440.2022.03.032]
点击复制

水稻类病斑突变体基因克隆及发生机制研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年03期
页码:
837-848
栏目:
综述
出版日期:
2022-06-30

文章信息/Info

Title:
Research advances in gene cloning and occurrence mechanism of rice lesion mimic mutants
作者:
沈旺鑫1史小品1杜海波1冯志明12陈宗祥12胡珂鸣12范江波3左示敏124
(1.扬州大学江苏省作物基因组学和分子育种重点实验室/植物功能基因组学教育部重点实验室,江苏扬州225009;2.扬州大学江苏省粮食作物现代产业技术协同创新中心/江苏省作物遗传生理重点实验室,江苏扬州225009;3.上海交通大学农业与生物学院,上海200240;4.扬州大学教育部农业与农产品安全国际合作联合实验室,江苏扬州225009)
Author(s):
SHEN Wang-xin1SHI Xiao-pin1DU Hai-bo1FENG Zhi-ming12CHEN Zong-xiang12HU Ke-ming1FAN Jiang-bo3ZUO Shi-min124
(1.Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou 225009, China;2.Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou 225009, China;3.School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;4.Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, China)
关键词:
水稻类病斑突变体表型基因克隆分子机制
Keywords:
ricelesion mimic mutantsphenotypegene cloningmolecular mechanism
分类号:
Q785
DOI:
doi:10.3969/j.issn.1000-4440.2022.03.032
文献标志码:
A
摘要:
类病斑突变体 (Lmms) 是研究植物细胞死亡和防御反应机制的重要材料。本文对水稻类病斑突变体的最新研究进展进行了综述。在此基础上,对进一步加强类病斑突变体及其抑制突变体基因的鉴定与克隆、解析病健组织间细胞命运的精细调控机制,以及如何利用类病斑突变体开展抗逆分子设计育种进行了讨论。
Abstract:
Lesion mimic mutants (Lmms) are important materials for studying the mechanisms of plant cell death and defense responses. The current research progress of rice Lmms was summarized in this article. Furthermore, we discussed the strengthen of identification and characterization of more rice Lmms genes and relative inhibition genes, the elucidation of sophisticated regulating mechanism for the fate of cells between lesion tissue and its adjacent healthy tissue, and how to design biotic and abiotic stress resistance/tolerance breeding using the knowledge from Lmms.

参考文献/References:

[1]钱婧雅,刘芬,屈成,等.水稻类病斑突变基因的克隆及其机制研究进展[J]. 分子植物育种, 2021, 19(10):1-8.
[2]DIETRICH R A, DELANEY TP, UKNES S J, et al. Arabidopsis mutants simulating disease resistance response[J]. Cell, 1994,77(4):565-577.
[3]GUO C, WU G, XING J, et al. A mutation in a coproporphyrinogen iii oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in arabidopsis[J]. Plant Cell Reports, 2013, 32(5):687-702.
[4]PERSSON M, RASMUSSEN M, FALK A, et al. Barley mutants with enhanced level of resistance to swedish isolates of bipolaris sorokiniana, causal agent of spot blotch[J]. Plant Breeding, 2008, 127(6):639-643.
[5]LI S T, PEI Z Y, LUO L J , et al. Isolation and characterization of rice lesion mimic mutants from a T-DNA tagged population[J]. Progress in Natural Science, 2005, 15(1):17-23.
[6]WANG L, HAN S, ZHONG S, et al. Characterization and fine mapping of a necrotic leaf mutant in maize (Zea mays L.)[J]. Journal of Genetics and Genomics, 2013, 40(6):307-314.
[7]WANG S H, LIM J H, KIM S S, et al. Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signalling and delays leaf senescence in rice[J]. Journal of Experimental Botany,2015, 66(22):7045-7059.
[8]BADIGANNAVAR A M, KALE D M, EAPEN S, et al. Inheritance of disease lesion mimic leaf trait in groundnut[J]. Journal of Heredity, 2002, 93(1): 50-52.
[9]CHUNG J, STASWICK P E, GRAEF G L, et al. Inheritance of a disease lesion mimic mutant in soybean[J]. Journal of Heredity, 1998, 89(4): 363-365.
[10]ZHU X B, ZE M, CHERN M H, et al. Deciphering rice lesion mimic mutants to understand molecular network governing plant immunity and growth[J]. Rice Science, 2020, 27(4): 278-288.
[11]WU C J, BORDEOS A, MADAMBA M R, et al. Rice lesion mimic mutants with enhanced resistance to diseases[J]. Molecular Genetics and Genomic, 2008, 279(6): 605-619.
[12]KOSSLAK R M, DIETER J R, RUFF R L, et al. Partial resistance to root-borne infection by phytophthora sojae in three allelic necrotic root mutants in soybean[J]. Journal of Heredity, 1996, 87(6): 415-422.
[13]YAO N, GREENBERG J T. Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death[J]. The Plant Cell, 2006, 18(2): 397-411.
[14]LIN A H, WANG Y Q, TANG J Y, et al. Nitric oxideand protein s-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice[J]. Plant Physiology, 2012, 158(1): 451-464.
[15]KIYOSAWA S. Inheritance of a particular sensitivity of the rice variety, sekiguchi asahi, to pathogens and chemicals, and linkage relationship with blast resistance genes[J]. Nogyo Gijutsu Kenkyusho Hokoku, 1970, 21(1): 61-72.
[16]WANG N L, LONG T, YAO W, et al. Mutant resources for the functional analysis of the rice genome[J]. Molecular Plant, 2013, 6(3): 596-604.
[17]UENO M, SHIBATA H, KIHARA J, et al. Increased tryptophan decarboxylase and monoamine oxidase activities induce sekiguchi lesion formation in rice infected with magnaporthe grisea[J]. The Plant Journal, 2003,36(2): 215-228.
[18]YOSHIMURA A, IDETA O, IWATA N, et al. Linkage map of phenotype and RFLP markers in rice[J]. Plant Molecular Biology, 1997,35(1/2): 49-60.
[19]YIN Z, CHEN J, ZENG L, et al. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight[J]. Molecular Plant-Microbe Interactions, 2000, 13(8): 869-876.
[20]KIM J A, CHO K W, RAKSHA S, et al. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance[J]. Molecules and Cells, 2009, 28(5): 431-439.
[21]SONG G H, KWON C T, KIM S H, et al. The rice SPOTTED LEAF 4 (SPL4) encodes a plant spastin that inhibits ROS accumulation in leaf development and functions in leaf senescence[J]. Frontiers in Plant Science, 2018, 9: 1925.
[22]CHEN X F, HAO L , PAN J W , et al. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice[J]. Molecular Breeding, 2012, 30(2): 939-949.
[23]YAMANOUCHI U, YANO M, LIN H X, et al. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11): 7530-7535.
[24]KAORI K, TAKASHI Y, KENSUKE K, et al.Regulatory mechanisms of ROI generation are affected by rice spl mutations[J]. Plant and Cell Physiology, 2006, 47(8): 1035-1044.
[25]ZENG L R, QU S H, BORDEOS A, et al. Spotted leaf 11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity[J]. The Plant Cell, 2004, 16(10): 2795-2808.
[26]FAN J B, BAI P F, NING Y S, et al. The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice[J]. Cell Host & Microbe, 2018, 23(4): 498-510.
[27]MIGUEL E, VEGA S, ZENG L R, et al. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice[J]. The Plant Cell, 2008, 20(6): 1456-1469.
[28]LIU J L, CHAN H P, HE F, et al. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice[J].PLoS Pathogens, 2015, 11(2): e1004807.
[29]RITSUKO M, HIDEYUKI H, RYOTA K, et al. Isolation and characterization of rice lesion-mimic mutants with enhanced resistance to rice blast and bacterial blight[J]. Plant Science, 2002, 163(2): 345-353.
[30]SONG C N, QIAN J L, FANG J G, et al. Cloning, subcellular localization and expression analysis of spl9 and spl13 genes from poncirus trifoliata[J]. Scientia Agricultura Sinica, 2010,43(10): 2105-2114.
[31]MASAKI M, CHIKAKO T, KAZUHIKO S, et al. Isolation and molecular characterization of aspotted leaf 18 mutants by modified activation-tagging in rice[J]. Plant Molecular Biology, 2007, 63(6): 847-860.
[32]宋莉欣, 黄奇娜, 奉保华, 等.水稻类病斑表型叶突变体spl21的鉴定与基因定位[J]. 作物学报, 2015, 41(10): 1519-1528.
[33]CHEN Z, HEN T, SATHE A P, et al. Identification of a novel semi-dominant spotted-leaf mutant with enhanced resistance to Xanthomonas oryzae pv. oryzae in rice[J]. International journal of molecular sciences, 2018, 19(12): 3766.
[34]CHEN T, CHEN Z, ATUL P S, et al. Characterization of a novel gain-of-function spotted-leaf mutant with enhanced disease resistance in rice[J]. Rice Science, 2019, 26(6): 372-383.
[35]QIAO Y L, JIANG W Z, LEE J H, et al. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa)[J]. New phytologist, 2010, 185(1): 258-274.
[36]WANG Z H, WANG Y, HONG X, et al. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice[J]. Journal of Experimental Botany, 2015, 66(3): 973-987.
[37]HUANG Q N, SHI Y F, YANG Y, et al. Characterization and genetic analysis of a light- and temperature-sensitive spotted-leaf mutant in rice[J]. Journal of Integrative Plant Biology, 2011, 53(8): 671-681.
[38]代高猛, 朱小燕, 李云峰, 等.水稻类病斑突变体spl31的遗传分析与基因定位[J]. 作物学报, 2013, 39(7):1223-1230.
[39]SUN L T, WANG Y H, LIU L L, et al. Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice[J]. Scientific Reports, 2017, 7(1): 41846.
[40]WANG S, LEI C L, WANG J L, et al. SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice[J]. Journal of Experimental Botany, 2017, 68(5): 899-913.
[41]刘宝玉,刘军化,杜丹,等.水稻类病斑突变体spl34的鉴定与基因精细定位[J].作物学报, 2018, 44(3):332-342.
[42]MA J, WANG Y F, MA X D, et al. Disruption of gene SPL35, encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice[J]. Plant Biotechnology Journal, 2019, 17(8): 1679-1693.
[43]SUN H M, MAO J J, LAN B, et al. Characterization and mapping of a spotted-leaf genotype, sply181 that confers blast susceptibility in rice[J]. European Journal of Plant Pathology, 2014, 140(3): 407-417.
[44]BABU R, JIANG C J, XU X, et al. Isolation, fine mapping and expression profiling of a lesion mimic genotype, splnf4050-8 that confers blast resistance in rice[J]. 2011, 122(4): 831-854.
[45]奉保华. 水稻类病斑表型叶突变体HM47的基因克隆与功能分析[D], 北京:中国农业科学院, 2015.
[46]ENDO A, NELSON K M, THOMS K, et al. Functional characterization of xanthoxin dehydrogenase in rice[J]. Journal of Plant Physiology, 2014, 171(14): 1231-1240.
[47]CAMPBELL M A,RONALD P C. Characterization of four rice mutants with alterations in the defense response pathway[J]. Molecular Plant Pathology, 2005, 6(1): 11-21.
[48]AKIRA T, TSUTOMU K, KENJI H, et al. Lesion mimic mutants of rice with alterations in early signaling events of defense[J]. The Plant Journal, 1999, 17(5): 535-545.
[49]FENG B H, YANG Y, SHI Y F, et al. Genetic analysis and gene mapping of light brown spotted leaf mutant in rice[J]. Rice Science, 2013, 20(1):13-18.
[50]LI Z, ZHANG Y X, LIU L, et al. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa)[J]. Plant Physiology and Biochemistry, 2014, 80: 300-307.
[51]FEKIH R, TAMIRU M, KANZAKI H, et al. The rice(Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response[J]. Molecular Genetics and Genomics, 2015, 290(2):611-622.
[52]MA J Y, CHEN S L, ZHANG J H, et al. Identification and genetic mapping of a lesion mimic mutant in rice[J]. Rice Science, 2012, 19(1): 1-7.
[53]HU B, ZHU C, LI F, et al. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice[J]. Plant Physiology, 2011, 156(3): 1101-1115.
[54]王建军,张礼霞,王林友,等.水稻类病变(lesion resembling disease)突变体对光照和温度的诱导反应[J].中国农业科学, 2010, 43(10): 2039-2044.
[55]TONG X H, QI J F, ZHU X D, et al. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway[J]. The Plant Journal, 2012, 71(5): 763-775.
[56]UNDAN J R, TAMIRU M, ABE A et al. Mutation in oslms, a gene encoding a protein with two double-stranded rna binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L.) [J]. Genes & Genetic Systems, 2012, 87(3): 169-179.
[57]WANG L J, PEI Z Y, TIAN Y C, et al. Oslsd1, a rice zinc finger protein, regulates programmed cell death and callus differentiation[J]. Molecular Plant-Microbe Interactions, 2005, 18(5): 375-384.
[58]CHERN M, FITZGERALD H A, CANLAS P E, et al. Overexpression of a rice NPR1 homolog leads to constitutive activation of defence response and hypersensitivity to light[J]. Molecular Plant-Microbe Interactions, 2005, 18(6): 511-520.
[59]YUAN Y, ZHONG S, LI Q, et al. Functional analysis of rice NPR1-like genes reveals that OsNPR1 /NHI is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility[J]. Plant Biotechnology Journal, 2007, 5(2): 313-324.
[60]MATSUI H, TAKAHASHI A, HIROCHIKA H et al. Rice immune regulator, OsPti1a, is specifically phosphorylated at the plasma membrane[J]. Plant Signaling & Behavior, 2015, 10(3): e991569.
[61]KIM J A, CHO K W, RAKSHA S, et al. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance[J]. Molecules and Cells, 2009, 28(5): 431-439.
[62]JIAO B B, WANG J J, ZHU X D, et al. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice[J]. Molecular Plant, 2012, 5(1): 205-217.
[63]JIANG C J, MASAKI S, MAEDA S, et al. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice[J]. Molecular Plant-microbe Interactions, 2009, 22(7): 820-829.
[64]YAMAGUCHI T, KURODA M, YAMAKAWA H, et al. Suppression of a phospholipase d gene, ospldβ1, activates defense responses and increases disease resistance in rice[J]. Plant Physiology, 2009, 150(1): 308-319.
[65]SUN C H, LIU L C, TANG J Y, et al. RLIN1, encoding a putative coproporphyrinogen Ⅲ oxidase, is involved in lesion initiation in rice[J]. Journal of Genetics and Genomics, 2011, 38(1): 29-37 .
[66]UJIWARA T, MAISONNEUVE S, ISSHIKI M, et al. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice[J]. Journal of Biological Chemistry, 2010, 285(15): 11308-11313.
[67]YOU Q Y, ZHAI K R, YANG D L, et al. An E3 ubiquitin ligase-BAG protein module controls plant innate immunity and broad-spectrum disease resistance[J]. Cell Host & Microbe, 2016, 20(6): 758-769.
[68]WANG Y Q, LIN A H, GARY J L, et al. H2O2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species[J]. Journal of Integrative Plant Biology, 2013, 55(3): 202-208.
[69]CHERN M, XU Q, BART R S, et al. Correction: a genetic screen identifies a requirement for cysteine-rich-receptor-like kinases in rice NH1 (OsNPR1)-mediated immunity[J]. PLoS Genetics, 2016,12(7): e1006182.
[70]SAKURABA Y, RAHMAN M L, CHO S H, et al. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions[J]. The Plant Journal, 2013, 74(1): 122-133.
[71]HE Y, ZHANG X B, SHI Y F, et al. Premature senescence leaf 50 promotes heat stress tolerance in rice (Oryza sativa L.)[J]. Rice, 2021, 14(1): 53.
[72]CHEN G, WU C, HE L, et al. Knocking out the gene rls1 induces hypersensitivity to oxidative stress and premature leaf senescence in rice[J]. International Journal of Molecular Sciences, 2018, 19(10): 2853.
[73]CHERN M S, FITZGERALD H A, CANLAS P E, et al. Overexpression of a rice NPR1 homolog leads to constitutive activation of defence response and hypersensitivity to light[J]. Molecular Plant-Microbe Interactions, 2005, 18: 511-520.
[74]TANG J Y, ZHU X D, WANG Y Q, et al. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice[J]. The Plant Journal, 2011, 66(6): 996-1007.
[75]HU G, RICHTER T E, HULBERT S H, et al. Disease lesion mimicry caused by mutations in the rust resistance gene rp1[J]. The Plant Cell, 1996,8(8): 1367-1376.
[76]TANG X, XIE M, KIM Y J, et al. Overexpression of Pto activates defense responses and confers broad resistance[J]. The Plant cell, 1999, 11(1): 15-29.
[77]QUESADA V, SARMIENTO M R, GONZLEZ B R, et al. Porphobilinogen deaminase deficiency alters vegetative and reproductive development and causes lesions in Arabidopsis[J]. PLoS One, 2013,8(1): e53378.
[78]MANOSALVA P M, BRUCE MYRON, JAN L E. Rice 14-3-3 protein (gf14e) negatively affects cell death and disease resistance[J]. Plant Journal, 2011,68(5): 777-787.
[79]COLL N S, EPPLE P, DANGL J L. Programmed cell death in the plant immune system[J]. Cell Death and Differentiation, 2011, 18(8): 1247-1256.
[80]黄奇娜,杨杨,施勇烽,等. 水稻类病斑表型叶变异研究进展[J]. 中国水稻科学, 2010, 24(2):108-115.
[81]MACH J M, CASTILLO A R, HOOGSTRATEN R, et al. The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(2): 771-776.
[82]RATE D N, CUENCA J V, BOWMAN G R , et al. The gain-of-function arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth[J]. Plant Cell, 1999, 11(9):1695-1708.
[83]邱结华,马宁,蒋汉伟,等.水稻类病斑突变体lmm4的鉴定及其基因定位[J]. 中国水稻科学, 2014, 28(4):367-376.
[84]JAMBUNATHAN N, SIANI J M, MCNELLIS T W. A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance[J]. The Plant Cell, 2001, 13(10) :2225-2240.
[85]LIU Q, NING Y, ZHANG Y, et al. OsCUL3a Negatively regulates cell death and immunity by degrading OsNPR1 in rice[J]. Plant Cell, 2017, 292:345-359.
[86]CUI Y J, PENG Y L, ZHANG Q, et al. Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice[J]. The Plant Journal, 2021, 105(4):942-956.
[87]AKIRA A, WONG H L, MASAYUKI F, et al. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity[J]. Cell Host & Microbe, 2013, 13(4): 465-476.
[88]LI Z, DING B, ZHOU X E, et al. The rice dynamin-related protein OsDRP1E negatively regulates programmed cell death by controlling the release of cytochrome c from mitochondria[J]. PLoS Pathogen, 2017,13(1): e1006157.
[89]LIAO Y, BAI Q, XU P, et al. Mutation in rice abscisic Acid2 results in cell death enhanced disease-resistance, altered seed dormancy and development[J]. Frontiers in Plant Science, 2018,9: 405.
[90]TU B, HU L, CHEN W, et al. Disruption of OsEXO70A1 causes irregular vascular bundles and perturbs mineral nutrient assimilation in rice[J]. Scientific Reports, 2015,5:18609.
[91]KE S, LIU S, LUAN X, et al. Mutation in a putative glycosyltransferase-like gene causes programmed cell death and early leaf senescence in rice[J]. Rice, 2019,12(1): 7.
[92]LEE D, LEE G, KIM B, et al. Identification of a spotted leaf sheath gene involved in early senescence and defense response in rice[J].Front Plant Sci, 2018,9: 1274.
[93]ZHAO J, LIU P, LI C, et al. LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice[J].Journal of Genetics and Genomics, 2017,44(2): 107-118.
[94]ZHAO X S, QIU T C, FENG H J, et al. A novel glycine-rich domain protein, OsGRDP1, functions as a critical feedback regulator for controlling cell death and disease resistance in rice[J]. Journal of Experimental Botany, 2021, 72(2):608-622.
[95]BRUGGEMAN Q, RAYNAUD C, BENHAMED M, et al. To die or not to die? Lessons from lesion mimic mutants [J]. Frontiers in Plant Science,2015,6: 24.
[96]DU D, ZHANG C W, XING Y D, et al The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19[J]. Plant Biotechnology Journal, 2021, 9(5):1052-1064.
[97]SHIRSEKAR G S, VEGA S, MIGUEL E, et al. Identification and characterization of suppressor mutants of spl11- mediated cell death in rice[J]. Molecular Plant-microbe Interactions, 2014, 27(6) :528-536.
[98]RAO Y C, JIAO R, WANG S, et al. SPL36 Encodes a receptor-like protein kinase that regulates programmed cell death and defense responses in rice[J]. Rice, 2021, 14(1): 34.
[99]QIU T C, ZHAO X S, FENG H J, et al. OsNBL3, a mitochondrion-localized pentatricopeptide repeat protein, is involved in splicing nad5 intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses[J].Plant Biotechnology Journal, 2021, 19(11): 2277-2290
[100]ZAVALIEV R, MOHAN R, CHEN T Y, et al. Formation of NPR1 condensates promotes cell survival during the plant immune response[J]. Cell, 2020, 182(5) :1093-1108.
[101]WU J H, ZHU C F, PANG J H, et al. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa[J]. The Plant Journal, 2014, 80(6): 1118-1130.
[102]HOANG T V, VO K T X, RAHMAN M M, et al. Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice[J]. Plant Science, 2019,289 :110273.
[103]MA H G , LI J , MA L, et al. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance[J]. Molecular Plant, 2021, 14(4): 620-632.
[104]LIU X Q, LI F, TANG J Y, et al. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice[J]. PLoS One, 2012, 7(11): e50089.
[105]THAO N P, CHEN L T, NAKASHIMA A, et al. RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice[J]. The Plant Cell, 2007, 19(12): 4035-4045.
[106]HU H T, REN D Y, HU J, et al. White and lesion-mimic leaf1, encoding a lumazine synthase, affects ROS balance and chloroplast development in rice[J]. The Plant Journal, 2021, 108(6):1690-1703.
[107]郭明欣,刘佳佳,侯琳琳,等. 植物体内活性氧的产生及清除机制研究进展[J]. 科技视界,2021,4(8):104-106.
[108]黄家华,吕曼芳,李元强,等. 活性氧在植物体中的有益作用[J]. 现代园艺,2019(3):173-174.
[109]GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930.
[110]PEI Z M, MURATA Y, BENNING G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature, 2000, 406(6797):731-734.
[111]YAMADA M, HAN X W, BENFEY P N. RGF1 controls root meristem size through ROS signalling[J]. Nature, 2020,577(7788): 85-88.
[112]LIANG X X, DING P T, LIAN K H, et al. Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor[J]. eLife,2016,5: e13568.
[113]ZHANG S, HEYES D J, FENG L, et al. Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis[J]. Nature, 2019, 574(7780):722-725.
[114]唐民科,张均田. 半胱氨酸-天冬氨酸蛋白酶(Caspase)及其在细胞凋亡中的作用[J]. 医学研究通讯,2000(11): 9-13.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(03):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(03):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(03):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(03):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(03):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(03):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(03):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(03):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(03):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(03):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]

备注/Memo

备注/Memo:
收稿日期:2021-11-23基金项目:国家自然科学基金项目(31872858);江苏省重点研发计划项目(BE2019339);江苏省作物基因组学和分子育种重点实验室开放课题(PL201905)作者简介:沈旺鑫(1994-),男,江苏扬州人,硕士研究生,主要从事水稻抗病遗传分子育种。(E-mail) shen_wangxin@163.com通讯作者:左示敏, (E-mail) smzuo@yzue.edu.cn
更新日期/Last Update: 2022-07-07