参考文献/References:
[1]魏瑞敏,郑井元,刘峰,等. 辣椒bZIP家族基因的鉴定与表达分析[J]. 园艺学报, 2018, 45(8): 1535-1550.
[2]LI D, FU F, ZHANG H, et al. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.) [J]. BMC Genomics, 2015, 16(1): 771.
[3]WOLFGANG D L, SNOEK B, BEREND S, et al. The Arabidopsis bZIP transcription factor family-an update [J]. Current Opinion in Plant Biology, 2018, 45: 36-49.
[4]JAKOBY M, WEISSHAAR B, DRGE-LASER W, et al. bZIP transcription factors in Arabidopsis [J]. Trends in Plant Science, 2002, 7(3): 106-111.
[5]YAN Z, XU D, JIA L, et al. Genome-wide identification and structural analysis of bZIP transcription factor genes in Brassica napus [J]. Genes, 2017, 8(11): 288.
[6]WANG Z, ZHU J, YUAN W, et al. Genome-wide characterization of bZIP transcription factors and their expression patterns in response to drought and salinity stress in Jatropha curcas[J]. International Journal of Biological Macromolecules, 2021, 181: 1207-1223.
[7]LI F, LIU J, GUO X, et al. Genome-wide survey, characterization, and expression analysis of bZIP transcription factors in Chenopodium quinoa [J]. BMC Plant Biology, 2020, 20(1): 405.
[8]ZHAO K, CHEN S, YAO W, et al. Genome-wide analysis and expression profile of the bZIP gene family in poplar [J]. BMC Plant Biology, 2021, 21(122): 122.
[9]JIN M, GAN S, JIAO J, et al. Genome-wide analysis of the bZIP gene family and the role of AchnABF1 from postharvest kiwifruit (Actinidia chinensis cv. Hongyang) in osmotic and freezing stress adaptations [J]. Plant Science, 2021, 308: 110927.
[10]CHRISTOPH W, LORENZO P, JEBASINGH S, et al. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth [J]. PLoS Genetics, 2017, 13(2): e1006607.
[11]OYAMA T, SHIMURA Y, OKADA K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl [J]. Genes Development, 1997, 11(22): 2983-2995.
[12]HOU X, HU W, SHEN L, et al. Global identification of DELLA target genes during Arabidopsis flower development [J]. Plant Physiology, 2008, 147(3): 1126-1142.
[13]徐伟. 小麦bZIP基因TaGBF参与植物开花调控机制研究[D]. 济南: 山东大学, 2015.
[14]NAN H, CAO D, ZHANG D, et al. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean [J]. PLoS One, 2014, 9(5): e97669.
[15]TAKESHIMA R, NAN H, HARIGAI K, et al. Functional divergence between soybean FLOWERING LOCUS T orthologues, FT2a and FT5a, in post-flowering stem growth [J]. Journal of Experimental Botany, 2019, 70(15): 3941-3953.
[16]LI M, HUA W, YUAN Y, et al. Capsella rubella TGA4, a bZIP transcription factor, causes delayed flowering in Arabidopsis thaliana [J]. Archives of Biological Sciences, 2015, 68: 141.
[17]周波,王宇,孙梅,等. 津田芜菁bZIP蛋白HY5 cDNA的克隆及表达特性[J]. 分子植物育种, 2008, 6(1): 59-64.
[18]LIU X, LI Z, HOU Y, et al. Protein interactomic analysis of SAPKs and ABA-inducible bZIPs revealed key roles of SAPK10 in rice flowering [J]. International Journal of Molecular Sciences, 2019, 20(6): 1427.
[19]CERISE M, GIAUME F, GALLI M, et al. OsFD4 promotes the rice floral transition via florigen activation complex formation in the shoot apical meristem [J]. New Phytologist, 2020, 229(1): 429-443.
[20]TONG C, WANG X, YU J, et al. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa [J]. BMC Genomics, 2013, 14: 689.
[21]DAI Y, ZHANG S, SUN X, et al. Comparative transcriptome analysis of gene expression and regulatory characteristics associated with different vernalization periods in Brassica rapa [J]. Genes, 2020, 11(4): 392.
[22]CHEN G, WANG J, WANG H, et al. Genome-wide analysis of proline-rich extension-like receptor protein kinase (PERK) in Brassica rapa and its association with the pollen development [J]. BMC Genomics, 2020, 21: 401.
[23]陈国户,王浩,李广,等. 白菜PRX基因家族的鉴定与生物信息学分析[J]. 浙江大学学报, 2020, 46(6): 677-686.
[24]CHEN C, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194-1202.
[25]孙宇,刘志鑫,叶子,等. 杧果RAV基因家族的全基因组分析[J]. 江苏农业学报, 2021, 37(4): 957-967.
[26]CANNON S, MITRA A, BAUMGARTEN A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J]. BMC Plant Biology, 2004, 4: 10.
[27]CHENG F, MANDKOV T, WU J, et al. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa [J]. The Plant Cell, 2013, 25: 1541-1554.
[28]FLAGEL L, WENDEL J. Gene duplication and evolutionary novelty in plants [J]. New Phytologist, 2009, 183(3): 557-564.
[29]POURABED E, GOLMOHAMADI F, MONFARED P, et al. Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis [J]. Molecular Biotechnology, 2015, 57(1): 12-26.