[1]马李广,张贺龙,庞小可,等.白菜bZIP转录因子基因家族应答春化反应关键基因表达分析[J].江苏农业学报,2022,38(03):765-774.[doi:doi:10.3969/j.issn.1000-4440.2022.03.023]
 MA Li-guang,ZHANG He-long,PANG Xiao-ke,et al.Genome-wide identification of bZIP transcription factor gene family in Brassica rapa and its association with vernalization[J].,2022,38(03):765-774.[doi:doi:10.3969/j.issn.1000-4440.2022.03.023]
点击复制

白菜bZIP转录因子基因家族应答春化反应关键基因表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年03期
页码:
765-774
栏目:
园艺
出版日期:
2022-06-30

文章信息/Info

Title:
Genome-wide identification of bZIP transcription factor gene family in Brassica rapa and its association with vernalization
作者:
马李广1张贺龙1庞小可1王浩1李广12汪承刚123袁凌云12侯金锋12唐小燕12陈国户123
(1.安徽农业大学园艺学院,安徽省园艺作物育种工程实验室,安徽合肥230036;2.安徽省皖江蔬菜产业研究院,安徽马鞍山238200;3.安徽农业大学皖西南综合试验站,安徽怀宁246100)
Author(s):
MA Li-guang1ZHANG He-long1PANG Xiao-ke1WANG Hao1LI Guang12WANG Cheng-gang123YUAN Ling-yun12HOU Jin-feng12TANG Xiao-yan12CHEN Guo-hu123
(1.Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, School of Horticulture, Anhui Agricultural University, Hefei 230036, China;2.Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China;3.Anhui Southwest Comprehensive Experimental Station of Anhui Agricultural University, Huaining 246100, China)
关键词:
白菜bZIP转录因子基因家族春化反应生物信息学分析
Keywords:
Brassica rapabZIP transcription factorgene familyvernalizationbioinformatics analysis
分类号:
S634.3
DOI:
doi:10.3969/j.issn.1000-4440.2022.03.023
文献标志码:
A
摘要:
为研究白菜(Brassica rapa)碱性亮氨酸拉链(Basic leucine zipper,bZIP)转录因子家族基因(BrbZIP)的相关功能,通过生物信息学分析技术,鉴定全基因组的BrbZIP基因家族成员,并对其染色体分布、进化关系、表达模式及其应答春化反应等进行了分析。白菜bZIP转录因子基因家族共有118个成员,在染色体上不均等分布。白菜组织转录组分析结果显示,大部分BrbZIP基因在根、茎、叶、花及荚中均有较高的表达丰度,且具有组织表达特异性;春化反应转录组、荧光定量PCR及相关基因互作网络分析结果表明,白菜bZIP基因家族中应答春化反应相关基因上调与下调表达基因数量差异不大,相互之间存在复杂的互作网络,其中4个成员(Bra039631、Bra020620、Bra004550与Bra020471)是应答春化反应的中心节点。
Abstract:
In order to explore the function of basic leucine zipper (bZIP) transcription factor in Brassica rapa and its association with vernalization, bioinformation methods were used to identify the B. rapa bZIP gene family members. The chromosome location, evolutionary relationship, expression pattern and vernalization response were analyzed through a variety of biological information softwares. The results revealed that 118 BrbZIP transcription factors were unevenly distributed on the chromosomes of B. rapa. Transcriptome analysis showed that most of the BrbZIP genes had high expression levels in roots, stems, leaves, flowers and pods, and had tissue expression specificity. The results of transcriptome, fluorescence quantitative PCR and interaction network analysis suggested that there was n o significant difference in the number of up-regulated an d down-regulated genes responding to vernalization in bZIP gene family of B. rapa, and the interaction network was complex. Four BrbZIP genes were the central nodes in response to vernalization.

参考文献/References:

[1]魏瑞敏,郑井元,刘峰,等. 辣椒bZIP家族基因的鉴定与表达分析[J]. 园艺学报, 2018, 45(8): 1535-1550.
[2]LI D, FU F, ZHANG H, et al. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.) [J]. BMC Genomics, 2015, 16(1): 771.
[3]WOLFGANG D L, SNOEK B, BEREND S, et al. The Arabidopsis bZIP transcription factor family-an update [J]. Current Opinion in Plant Biology, 2018, 45: 36-49.
[4]JAKOBY M, WEISSHAAR B, DRGE-LASER W, et al. bZIP transcription factors in Arabidopsis [J]. Trends in Plant Science, 2002, 7(3): 106-111.
[5]YAN Z, XU D, JIA L, et al. Genome-wide identification and structural analysis of bZIP transcription factor genes in Brassica napus [J]. Genes, 2017, 8(11): 288.
[6]WANG Z, ZHU J, YUAN W, et al. Genome-wide characterization of bZIP transcription factors and their expression patterns in response to drought and salinity stress in Jatropha curcas[J]. International Journal of Biological Macromolecules, 2021, 181: 1207-1223.
[7]LI F, LIU J, GUO X, et al. Genome-wide survey, characterization, and expression analysis of bZIP transcription factors in Chenopodium quinoa [J]. BMC Plant Biology, 2020, 20(1): 405.
[8]ZHAO K, CHEN S, YAO W, et al. Genome-wide analysis and expression profile of the bZIP gene family in poplar [J]. BMC Plant Biology, 2021, 21(122): 122.
[9]JIN M, GAN S, JIAO J, et al. Genome-wide analysis of the bZIP gene family and the role of AchnABF1 from postharvest kiwifruit (Actinidia chinensis cv. Hongyang) in osmotic and freezing stress adaptations [J]. Plant Science, 2021, 308: 110927.
[10]CHRISTOPH W, LORENZO P, JEBASINGH S, et al. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth [J]. PLoS Genetics, 2017, 13(2): e1006607.
[11]OYAMA T, SHIMURA Y, OKADA K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl [J]. Genes Development, 1997, 11(22): 2983-2995.
[12]HOU X, HU W, SHEN L, et al. Global identification of DELLA target genes during Arabidopsis flower development [J]. Plant Physiology, 2008, 147(3): 1126-1142.
[13]徐伟. 小麦bZIP基因TaGBF参与植物开花调控机制研究[D]. 济南: 山东大学, 2015.
[14]NAN H, CAO D, ZHANG D, et al. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean [J]. PLoS One, 2014, 9(5): e97669.
[15]TAKESHIMA R, NAN H, HARIGAI K, et al. Functional divergence between soybean FLOWERING LOCUS T orthologues, FT2a and FT5a, in post-flowering stem growth [J]. Journal of Experimental Botany, 2019, 70(15): 3941-3953.
[16]LI M, HUA W, YUAN Y, et al. Capsella rubella TGA4, a bZIP transcription factor, causes delayed flowering in Arabidopsis thaliana [J]. Archives of Biological Sciences, 2015, 68: 141.
[17]周波,王宇,孙梅,等. 津田芜菁bZIP蛋白HY5 cDNA的克隆及表达特性[J]. 分子植物育种, 2008, 6(1): 59-64.
[18]LIU X, LI Z, HOU Y, et al. Protein interactomic analysis of SAPKs and ABA-inducible bZIPs revealed key roles of SAPK10 in rice flowering [J]. International Journal of Molecular Sciences, 2019, 20(6): 1427.
[19]CERISE M, GIAUME F, GALLI M, et al. OsFD4 promotes the rice floral transition via florigen activation complex formation in the shoot apical meristem [J]. New Phytologist, 2020, 229(1): 429-443.
[20]TONG C, WANG X, YU J, et al. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa [J]. BMC Genomics, 2013, 14: 689.
[21]DAI Y, ZHANG S, SUN X, et al. Comparative transcriptome analysis of gene expression and regulatory characteristics associated with different vernalization periods in Brassica rapa [J]. Genes, 2020, 11(4): 392.
[22]CHEN G, WANG J, WANG H, et al. Genome-wide analysis of proline-rich extension-like receptor protein kinase (PERK) in Brassica rapa and its association with the pollen development [J]. BMC Genomics, 2020, 21: 401.
[23]陈国户,王浩,李广,等. 白菜PRX基因家族的鉴定与生物信息学分析[J]. 浙江大学学报, 2020, 46(6): 677-686.
[24]CHEN C, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194-1202.
[25]孙宇,刘志鑫,叶子,等. 杧果RAV基因家族的全基因组分析[J]. 江苏农业学报, 2021, 37(4): 957-967.
[26]CANNON S, MITRA A, BAUMGARTEN A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J]. BMC Plant Biology, 2004, 4: 10.
[27]CHENG F, MANDKOV T, WU J, et al. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa [J]. The Plant Cell, 2013, 25: 1541-1554.
[28]FLAGEL L, WENDEL J. Gene duplication and evolutionary novelty in plants [J]. New Phytologist, 2009, 183(3): 557-564.
[29]POURABED E, GOLMOHAMADI F, MONFARED P, et al. Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis [J]. Molecular Biotechnology, 2015, 57(1): 12-26.

备注/Memo

备注/Memo:
收稿日期:2021-09-10基金项目:国家自然科学基金项目(31801853);国家大学生创新创业基金项目(202110364080);安徽省大学生创新创业基金项目(S202010364238、S202010364239);安徽省博士后基金项目(2019B320)作者简介:马李广(2000-),男,广东河源人,学士,研究方向为蔬菜种质资源与遗传育种。(E-mail)1554727563@qq.com。张贺龙为共同第一作者。通讯作者:陈国户,(E-mail)cgh@ahau.edu.cn
更新日期/Last Update: 2022-07-07