参考文献/References:
[1]TM P, PRANATHI A, SAIASHRITHA K, et al. Tomato leaf disease detection using convolutional neural networks: 2018 International conference on contemporary computing (IC3) [C]. Piscataway: IEEE Press, 2018.
[2]MIM T, SHEIKH M H, SHAMPA R A, et al. Leaves diseases detection of tomato using image processing: 2019 International conference on system modeling and advancement in research trends (SMART) [C]. Piscataway: IEEE Press, 2019.
[3]MOKHTAR U, ALI M A S, HASSANIEN A E, et al. Identifying two of tomatoes leaf viruses using support vector machine[M]. New Delhi: Springer Press, 2015:771-782.
[4]柴洋,王向东. 基于图像处理的温室大棚中番茄的病害识别[J]. 自动化技术与应用, 2013, 32(9): 83-89.
[5]JIANG D, LI F, YANG Y, et al. A tomato leaf diseases classification method based on deep learning: 2020 Chinese control and decision conference (CCDC) [C]. Piscataway: IEEE Press, 2020.
[6]RANGARAJAN A K, PURUSHOTHAMAN R, RAMESH A. Tomato crop disease classification using pre-trained deep learning algorithm[J]. Procedia Computer Science, 2018, 133: 1040-1047.
[7]王艳玲,张宏立,刘庆飞,等. 基于迁移学习的番茄叶片病害图像分类[J]. 中国农业大学学报, 2019, 24(6): 124-130.
[8]JIA S, JIA P, HU S, et al. Automatic detection of tomato diseases and pests based on leaf images: 2017 Chinese automation congress (CAC) [C]. Piscataway: IEEE Press, 2017.
[9]WU Q, CHEN Y, MENG J. DCGAN based data augmentation for tomato leaf disease identification[J]. IEEE Access, 2020,8: 98716-98728.
[10]胡志伟,杨华,黄济民,等. 基于注意力残差机制的细粒度番茄病害识别[J]. 华南农业大学学报, 2019, 40(6): 124-132.
[11]李晓振,徐岩,吴作宏,等. 基于注意力神经网络的番茄叶部病害识别系统[J]. 江苏农业学报, 2020, 36(3): 561-568.
[12]MEERADEVI A K, RANJANA V, MUNDADA M R, et al. Design and development of efficient techniques for leaf disease detection using deep convolutional neural networks: 2020 IEEE international conference on distributed computing vlsi electrical circuits and robotics (DISCOVER) [C]. Piscataway: IEEE Press, 2020.
[13]方晨晨,石繁槐. 基于改进深度残差网络的番茄病害图像识别[J]. 计算机应用, 2020, 40(增刊1): 203-208.
[14]郭小清,范涛杰,舒欣. 基于改进Multi-Scale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019, 35(13): 162-169.
[15]ELHASSOUNY A, SMARANDACHE F. Smart mobile application to recognize tomato leaf diseases using convolutional neural networks: 2019 International conference of computer science and renewable energies (ICCSRE) [C]. Piscataway: IEEE Press, 2019.
[16]AGARWAL M, GUPTA S K, BISWAS K K. Development of efficient CNN model for tomato crop disease identification [J]. Sustainable Computing: Informatics and Systems, 2020, 28(1):100407.
[17]HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks: IEEE conference on computer vision and pattern recognition[C]. Piscataway: IEEE Press, 2017.
[18]HUGHES D P, SALATHE M. An open access repository of images on plant health to enable the development of mobile disease diagnostics[EB/OL]. (2016-04-04)
[2021-09-20]. https://arxiv.53yu.com/ftp/arxiv/papers/1511/1511.08060.
[19]刘子记,杜公福,牛玉,等. 番茄主要病害的发生与防治技术[J]. 长江蔬菜, 2019(19): 59-62.
[20]刘鹏鹏. 基于深度学习的番茄叶面型病虫害识别研究[D]. 南昌:南昌大学, 2020.
[21]CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
[22]宋余庆,谢熹,刘哲,等. 基于多层EESP深度学习模型的农作物病虫害识别方法[J]. 农业机械学报, 2020, 51(8): 196-202.
[23]IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet:Alexnet-level accuracy with 50× fewer parameters and <0.5 MB model size[EB/OL]. (2016-11-04)
[2021-09-20].https://arxiv.org/abs/1602.07360v4.
[24]宋永嘉,刘宾,魏暄云,等. 大数据时代无线传感技术在精准农业中的应用进展[J].江苏农业科学,2021,49(8):31-37.
[25]李仁路,万书勤,康跃虎,等. 基于微灌工程设计成果数据的农田电子地图构建方法[J].排灌机械工程学报,2020,38(9):939-944.
[26]林娜,陈宏,赵健,等. 轻小型无人机遥感在精准农业中的应用及展望[J].江苏农业科学,2020,48(20):43-48.