参考文献/References:
[1]商世吉,杨立群,赵庸洛,等. 水稻品种抗稻瘟病性鉴定方法的研究[J].东北农学院学报,1989(4):321-326.
[2]张亚玲,周万福,靳学慧. 黑龙江省稻瘟病菌与水稻品种的互作分析[J].东北农业大学学报,2011,42(1):28-33.
[3]张武,黄帅,汪京京,等. 复杂背景下小麦叶部病害图像分割方法研究[J].计算机工程与科学,2015,37(7):1349-1354.
[4]马媛,冯全,杨梅. 基于HOG的酿酒葡萄叶检测[J].计算机工程与应用,2016,52(15):158-161.
[5]鲍文霞,邱翔,胡根生,等. 基于椭圆型度量学习空间变换的水稻虫害识别[J].华南理工大学学报(自然科学版),2020,48(10):136-144.
[6]王映龙,戴香粮. 图像处理技术在水稻虫害系统中的应用[J].微计算机信息,2007(26):274-275,256.
[7]XIA C, LEE J M , LI Y ,et al. Plant leaf detection using modified active shape models[J]. Biosystems Engineering, 2013,116(1):23-35.
[8]YE M, CAO Z, YU Z , et al. Crop feature extraction from images with probabilistic superpixel Markov random field[J]. Computer & Electronics in Agriculture, 2015, 114:247-260.
[9]MOHANTY S P, HUGHES D P, MARCEL S. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016,7: 14-19.
[10]FERENTINOS K P. Deep learning models for plant disease detection and diagnosis[J]. Computers and Electronics in Agriculture, 2018,145:311-318.
[11]房若民,沈凯文,李浩伟. MobileNet算法的嵌入式农业病虫害识别系统[J].单片机与嵌入式系统应用,2020,20(5):61-63.
[12]燕斌,周鹏,严利. 基于迁移学习的小样本农作物病害识别[J]. 现代农业科技,2019(6):87-89.
[13]杨国国,鲍一丹,刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J].农业工程学报,2017,33(6):156-162.
[14]张陶宁,陈恩庆,肖文福. 一种改进MobileNet_YOLOv3网络的快速目标检测方法[J].小型微型计算机系统,2021,42(5):1008-1014.
[15]李维刚,杨潮,蒋林,等. 基于改进YOLOv4算法的室内场景目标检测[J].激光与光电子学进展,2022,59(18):1-19.
[16]曹远杰,高瑜翔. 基于GhostNet残差结构的轻量化饮料识别网络[J].计算机工程,2022,48(3):310-314.
[17]张官荣,陈相,赵玉,等. 面向小目标检测的轻量化 YOLOv3算法[J].激光与光电子学进展, 2022,59(16):1-13.
[18]董艺威,于津. 基于SqueezeNet的轻量化卷积神经网络SlimNet[J].计算机应用与软件,2018,35(11):226-232.
[19]刘超军,段喜萍,谢宝文. 应用GhostNet卷积特征的ECO目标跟踪算法改进[J].激光技术,2022,46(2):239-247.
[20]EVERINGHAM M, GOOL L V, WILLIAMS C, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.
[21]WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//IEEE. 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). Seattle, WA, USA: IEEE Press, 2020: 1571-1580.
[22]周睿璇,汪俊霖,孙宏,等. 一种改进YOLO v3的货车车轮检测算法[J].山西电子技术,2021(4):37-40.
[23]HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[24]LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//IEEE. 2018 IEEE conference on computer vision and pattern recognition. Salt Lake City, UT, USA:IEEE Press, 2018: 8759-8768.
[25]LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. 2017 IEEE conference on computer vision and pattern recognition. Honolulu, HI, USA. IEEE Press, 2017: 936-944.
[26]张娜,贺兴时. 基于模拟退火的自适应正余弦算法[J].纺织高校基础科学学报,2021,34(1):84-90.
[27]HAN K, WANG Y, TIAN Q, et al. Ghostnet: More features from cheap operations[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA:IEEE Press, 2020: 1580-1589.
[28]李文婧,徐国伟,孔维刚,等. 基于改进YOLOv4的植物叶茎交点目标检测研究[J].计算机工程与应用,2022,58(4):221-228.