[1]郑开敏,肖家昶,马俊英,等.柠檬酸对铝胁迫下豆瓣菜生长及生理的影响[J].江苏农业学报,2022,38(02):476-485.[doi:doi:10.3969/j.issn.1000-4440.2022.02.023]
 ZHENG Kai-min,XIAO Jia-chang,MA Jun-ying,et al.Effects of exogenous citric acid on growth and physiological characteristics of watercress under aluminum stress[J].,2022,38(02):476-485.[doi:doi:10.3969/j.issn.1000-4440.2022.02.023]
点击复制

柠檬酸对铝胁迫下豆瓣菜生长及生理的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年02期
页码:
476-485
栏目:
园艺
出版日期:
2022-04-30

文章信息/Info

Title:
Effects of exogenous citric acid on growth and physiological characteristics of watercress under aluminum stress
作者:
郑开敏1肖家昶1马俊英1贺茂林1格桑2郑阳霞1
(1.四川农业大学园艺学院,四川成都611130;2.西藏自治区山南市农业技术推广中心,西藏山南856000)
Author(s):
ZHENG Kai-min1XIAO Jia-chang1MA Jun-ying1HE Mao-lin1GE Sang2ZHENG Yang-xia1
(1.College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China;2.Shannan Agricultural Technology Extension Center, Tibet, Shannan 856000, China)
关键词:
豆瓣菜铝胁迫柠檬酸生理特性
Keywords:
watercressaluminum stresscitric acidphysiological characteristics
分类号:
S637
DOI:
doi:10.3969/j.issn.1000-4440.2022.02.023
文献标志码:
A
摘要:
为研究外源柠檬酸对豆瓣菜铝胁迫的缓解作用,以湖北豆瓣菜和北京豆瓣菜为试验材料研究了不同质量浓度(0 mg/L、2 mg/L、10 mg/L、25 mg/L、50 mg/L和150 mg/L)柠檬酸对 1 mmol/L铝胁迫下豆瓣菜生长及生理特性的影响。结果表明,铝胁迫抑制了湖北豆瓣菜和北京豆瓣菜的生长,减小了植株株高(分别减小44.44%、39.09%)、茎粗(34.49%、5.63%)和根长(44.61%、40.66%),加剧了叶片膜脂过氧化作用,渗透调节物质大量积累,抗氧化酶活性提高,促进了植株对铝的吸收,抑制了叶片对N、P、K、Ca、Mg、Fe、Zn、Cu的积累。从生长指标来看,铝对湖北豆瓣菜的毒害作用大于北京豆瓣菜。外源添加柠檬酸后,湖北豆瓣菜和北京豆瓣菜均表现为生长状况有所改善,丙二醛含量降低,抗氧化酶活性维持较高水平,铝含量下降,并且施用柠檬酸促进了豆瓣菜对各营养元素的吸收。湖北豆瓣菜在2~25 mg/L柠檬酸质量浓度下解毒效果最佳,在150 mg/L柠檬酸质量浓度下缓解效果受到抑制甚至消失。北京豆瓣菜则在10~50 mg/L柠檬酸质量浓度下解毒效果最佳。所以,适宜质量浓度的外源柠檬酸能有效缓解铝胁迫下豆瓣菜的生理损伤。
Abstract:
In order to study the alleviating effect of exogenous citric acid on watercress under aluminum stress. The effects of different mass concentrations of citric acid (0 mg/L, 2 mg/L, 10 mg/L, 25 mg/L, 50 mg/L and 150 mg/L) on the growth and physiological characteristics of watercress under 1 mmol/L aluminum stress were studied. The results showed that aluminum stress inhibited the growth of watercress from Hubei (HB) and Beijing (BJ), decreased plant height (44.44%, 39.09%), stem diameter (34.49%, 5.63%) and root length (44.61%, 40.66%), intensified leaf membrane lipid peroxidation, accumulated a large amount of osmoregulatory substances, increased antioxidant enzyme activity, promoted the absorption of aluminum in plants and inhibited the accumulation of N, P, K, Ca, Mg, Fe, Zn and Cu in watercress leaves. From the perspective of growth index, the toxic effect of aluminum on HB was greater than that on BJ. After exogenous citric acid, the growth conditions of HB and BJ were improved, the content of malondialdehyde decreased, the activity of antioxidant enzymes maintained at a high level, the content of aluminum decreased, and the application of citric acid promoted the absorption of nutrients by watercress. The detoxification effect of HB was the best under the treatment of 2-25 mg/L citric acid, and the remission effect was inhibited or even disappeared under the treatment of 150 mg/L citric acid. BJ had the best detoxification effect under the treatment of 10-50 mg/L citric acid. Therefore, the appropriate concentration of exogenous citric acid can effectively alleviate the physiological damage of watercress under aluminum stress.

参考文献/References:

[1]徐仁扣,李九玉,周世伟,等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊,2018,33(2):160-167.
[2]何龙飞,沈振国,刘友良,等. 植物铝毒害机理的研究[J]. 广西农业生物科学,2002(3):188-194.
[3]KOCHIAN L V, PIEROS M A, HOEKENGA O A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity[J]. Plant and Soil, 2005, 274(1):175-195.
[4]EIJI T, HIROYUKI K, TETSUO H. Organic acid metabolism in aluminum-phosphate utilizing cells of carrot (Daucus carota L.)[J]. Plant & Cell Physiology, 1999(5):489-495.
[5]刘文星. 西藏野生大麦耐(酸)铝的离子机制和相关基因HvABCB25、HvEXPA1的功能鉴定[D]. 杭州:浙江大学,2019.
[6]吴柳杰,张永先,凌桂芝,等. 铝胁迫下黑麦和小麦根尖分泌有机酸的研究[J]. 广西植物,2014,34(4):455-459.
[7]杨列耿,杨曙,张永先,等. 铝离子胁迫下大豆根尖柠檬酸的分泌及SGA1基因的表达[J]. 作物学报,2015,41(4):666-670.
[8]沈宏,严小龙. 低磷和铝毒胁迫条件下菜豆有机酸的分泌与累积[J]. 生态学报,2002, 22( (3):387-394.
[9]左方华,凌桂芝,唐新莲,等. 铝胁迫诱导柱花草根系分泌柠檬酸[J]. 中国农业科学,2010,43(1):59-64.
[10]IVANO B, CHRISTOPH S. Aluminum exclusion and aluminum tolerance in woody plants[J]. Frontiers in Plant Science, 2013(4):172.
[11]杨乾展,赵浩如,程景才,等. 西洋菜的研究进展[J]. 河北农业科学,2008(4):22-24.
[12]陈晓红,李换平,江解增,等. 不同营养液配方对秋冬季豆瓣菜产量和品质的影响[J]. 湖北农业科学,2017,56(8):1450-1452.
[13]熊庆娥. 植物生理学实验教程[M]. 成都:四川出版集团,2003.
[14]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000.
[15]李卫群,朱慧,池青,等. 铝试剂分光光度法测定食品中铝的含量[J]. 中国食品添加剂,2007(5):161-163.
[16]鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2000.
[17]MATSUMOTO H, MOTODA H. Oxidative stress is associated with aluminum toxicity recovery in apex of pea root [J]. Plant and Soil,2012,363(1/2): 399-410.
[18]郑阳霞,赵善梅,向前,等. 铝胁迫对豆瓣菜生理特性及营养元素吸收的影响[J]. 甘肃农业大学学报,2019,54(4):83-91.
[19]孙远秀,邱爽,张伟伟,等. 柠檬酸对西瓜幼苗铝毒害的缓解作用[J]. 核农学报,2016,30(10):2072-2079.
[20]肖家昶,郑开敏,马俊英,等. 外源NO对铝胁迫下西瓜幼苗生长及生理特性的影响[J]. 农业环境科学学报,2021, 40(8):1-12.
[21]SHI X L, XUE L, REN X R, et al. Preliminary study on drought resistance of four broadleaved seedlings under water stress in south china [J]. Forest Research, 2011, 24(6): 760-767.
[22]陈海霞,张虓峰,蒋辉. 水杨酸对八仙花组培苗铝胁迫的缓解效应[J]. 湖南生态科学学报,2018,5(1):1-6.
[23]张盛楠,刘亚敏,刘玉民,等. 马尾松幼苗生长及生理特性对铝胁迫的响应[J]. 西北植物学报,2016,36(10):2022-2029.
[24]李冬,王艳芳,王悦华,等. 外源褪黑素对镉胁迫下豌豆种子萌发、幼苗抗性生理及镉含量的影响[J]. 核农学报,2019,33(11):2271-2279.
[25]刘玲,杨俊文,陈成,等. 羧基化多壁碳纳米管单一及其与镉复合处理对水稻幼苗叶片毒性效应的研究[J]. 植物资源与环境学报,2020,29(1):37-43.
[26]张俊波,李志怡,孙清,等. 高温胁迫对野扇花植株生长及叶中生理生化指标和极性代谢产物的影响[J]. 植物资源与环境学报, 2021, 30(2):52-58.
[27]王志颖,刘鹏. 柠檬酸抑制剂对铝胁迫下油菜抗氧化酶活性的影响[J]. 江苏农业学报,2013,29(5):957-966.
[28]熊洁,丁戈,陈伦林,等. 铝胁迫对两个油菜品种生理特性及产量构成因素的影响[J]. 甘肃农业大学学报,2019,54(5):43-50.
[29]赵嫚,陈仕勇,李亚萍,等. 外源GABA对盐胁迫下金花菜种子萌发及幼苗抗氧化能力的影响[J]. 江苏农业学报,2021,37(2):310-316.
[30]吴雪霞,张圣美,张爱冬,等. 外源褪黑素对高温胁迫下茄子幼苗光合和生理特性的影响[J]. 植物生理学报,2019,55(1):49-60.
[31]周小华,周泽仪,李昆志. 铝胁迫下外源抗坏血酸对水稻幼苗抗氧化性能的影响[J]. 核农学报,2020,34(10):2368-2375.
[32]姚虹宇,刘亚敏,张盛楠,等. 外源柠檬酸对铝胁迫下马尾松生理特性的影响[J]. 林业科学,2018,54(7):155-164.
[33]HE H, LI Y, HE L F. Aluminum toxicity and tolerance in solanaceae plants[J]. South African Journal of Botany, 2019, 123: 23-29.
[34]候丽丽,王伟,崔新菊,等. 氮磷钾肥对玉米农艺性状、叶绿素及产量的影响[J]. 天津农业科学,2021,27(5):8-11,15.
[35]陈文荣,刘鹏,黄朝表,等. 铝对荞麦铝和其他营养元素运输的影响[J]. 水土保持学报,2006,20(3):173-176,186.
[36]王晓锋,罗珍,刘晓燕,等. 钙磷对紫花苜蓿根瘤菌体系酸铝胁迫的修复效应[J]. 西南大学学报(自然科学版),2013,35(5):137-144.
[37]RENGEL Z. Uptake of aluminium by plant cells [J]. New Phytologist, 1996, 134(3): 389-406.
[38]朱静,樊月,欧阳玉莹,等. 铝胁迫对千年桐吸收和运输微量元素的影响[J]. 森林与环境学报,2021,41(3):234-241.
[39]张正仁,宋长铣. 微量元素在植物生命活动中的作用[J]. 南京大学学报(自然科学版),1991(3):530-539.

相似文献/References:

[1]刘强,柳正葳,刘召亮,等.一氧化氮对铝胁迫下烟草根系营养元素吸收和呼吸电子传递及内源激素含量的影响[J].江苏农业学报,2020,(02):292.[doi:doi:10.3969/j.issn.1000-4440.2020.02.006]
 LIU Qiang,LIU Zheng-wei,LIU Zhao-liang,et al.Effects of nitric oxide on nutrient uptake, respiratory electron transfer and endogenous phytohormones contents in roots of tobacco seedlings under aluminum stress[J].,2020,(02):292.[doi:doi:10.3969/j.issn.1000-4440.2020.02.006]

备注/Memo

备注/Memo:
收稿日期:2021-07-06基金项目:四川省科技厅重点项目(2019ZHFP0268)作者简介:郑开敏(1997-),女,重庆荣昌人,硕士研究生,主要从事豆瓣菜逆境生理方面的研究。(E-mail)3289767501@qq.com通讯作者:郑阳霞,(E-mail)754924349@qq.com
更新日期/Last Update: 2022-05-07