[1]¿×ÏéÕð,¹ùº£¾ê,Âí·Å,µÈ.ÉúÎïÐõÄý¼Á¸ÄÐÔ¾úË¿Çò¸ºÔغÃÑõ·´Ïõ»¯¾úT13Ç¿»¯Íѵª[J].½­ËÕũҵѧ±¨,2022,38(02):377-386.[doi:doi:10.3969/j.issn.1000-4440.2022.02.011]
¡¡KONG Xiang-zhen,GUO Hai-juan,MA Fang,et al.Enhanced nitrogen removal by bioflocculant combined mycelial pellets loaded with aerobic denitrificans T13[J].,2022,38(02):377-386.[doi:doi:10.3969/j.issn.1000-4440.2022.02.011]
µã»÷¸´ÖÆ

ÉúÎïÐõÄý¼Á¸ÄÐÔ¾úË¿Çò¸ºÔغÃÑõ·´Ïõ»¯¾úT13Ç¿»¯Íѵª()
·ÖÏíµ½£º

½­ËÕũҵѧ±¨[ISSN:1006-6977/CN:61-1281/TN]

¾í:
38
ÆÚÊý:
2022Äê02ÆÚ
Ò³Âë:
377-386
À¸Ä¿:
¸û×÷ÔÔÅࡤ×ÊÔ´»·¾³
³ö°æÈÕÆÚ:
2022-04-30

ÎÄÕÂÐÅÏ¢/Info

Title:
Enhanced nitrogen removal by bioflocculant combined mycelial pellets loaded with aerobic denitrificans T13
×÷Õß:
¿×ÏéÕð1¹ùº£¾ê2Âí·Å1¹¢Ã÷ÔÂ1ФÏö1
£¨1.¹þ¶û±õ¹¤Òµ´óѧ³ÇÊÐË®×ÊÔ´ÓëË®»·¾³¹ú¼ÒÖصãʵÑéÊÒ£¬ºÚÁú½­¹þ¶û±õ150090£»2.ÁÉÄþ´óѧ»·¾³Ñ§Ôº£¬ÁÉÄþÉòÑô110000£©
Author(s):
KONG Xiang-zhen1GUO Hai-juan2MA Fang1GENG Ming-yue1XIAO Xiao1
£¨1.State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China£»2.School of Environment, Liaoning University, Shenyang 110000, China£©
¹Ø¼ü´Ê:
¸ÄÐÔ¾úË¿ÇòÇ¿»¯ÍѵªºÃÑõ·´Ïõ»¯¾úÉúÎïÔØÌå
Keywords:
modified mycelial pelletsenhanced nitrogen removalaerobic denitrifying bacteriumbiomass carrier
·ÖÀàºÅ:
X52
DOI:
doi:10.3969/j.issn.1000-4440.2022.02.011
ÎÄÏ×±êÖ¾Âë:
A
ÕªÒª:
ÓɺÚÇúùY3(Aspergillus niger Y3)ÐγɵľúË¿Çò¾­¹ýÉúÎïÐõÄý¼Á¸ÄÐÔÇ¿»¯ºó×÷ΪÉúÎïÔØÌå¹Ì¶¨ºÃÑõ·´Ïõ»¯¾úT13 (Pseudomonas sp. T13)£¬¶ÔÆä¹Ì¶¨Ç°ºó¶ÔÈ«µªµÄÈ¥³ýЧÄÜ¡¢¾úȺµÄ»îÐÔ½øÐÐÑо¿²¢·ÖÎö¹Ì¶¨»¯¶ÔÓÚÉúÎïÇ¿»¯ÍѵªÐ§¹ûµÄÓ°Ïì¡£½á¹û±íÃ÷£¬¾úË¿Çò¸ºÔØT13ºóÈ¥³ýÈ«µªÐ§Äܵõ½ÁËÃ÷ÏÔµÄÌá¸ß¡£µ±¸ÄÐÔ¾úË¿Çò£¨ÊªÖÊÁ¿£©ÓëT13¾úÒº£¨3.5¡Á108CFU/ml£©µÄÖÊÁ¿Ìå»ý±È Ϊ1¡Ã15ʱ£¬È¥³ýÈ«µªµÄЧÄÜ×îºÃ¡£¸ÄÐÔ¾úË¿Çò¸ºÔØT13ºóµÄ±í¹ÛͼÏñºÍµç¾µÉ¨ÃèͼÏñ(SEM)ÏÔʾ£¬T13ϸ¾ú¸½×ÅÔÚ¸ÄÐÔ¾úË¿ÇòµÄ±íÃ棬ÇÒ¸ÄÐÔ¾úË¿ÇòÔØÌåµÄ½á¹¹¿ÉÒÔÁ¬ÐøÅàÑø45 dºóÈÔ±£³Ö½ôʵ½á¹¹¡£¸µÀïÒ¶ºìÍâ¹âÆ×(FTIR)ºÍÈýάӫ¹â¹âÆ×(EEM)½á¹ûÏÔʾ£¬°ûÍâ¾ÛºÏÎï(EPS)ÔÚ¸ÄÐÔ¾úË¿Çò¹Ì¶¨T13µÄ¹ý³ÌÖÐÆðµ½Á˹ؼü×÷Ó᣾úË¿ÇòµÄ¾úË¿²øÈÆÐγɵĽṹÌṩÁËÇ¿ÓÐÁ¦µÄ»úе½á¹¹£¬ÇÒ¾ßÓнϴóµÄ±È±íÃæ»ýºÍÁ¼ºÃµÄ´«ÖÊÐÔÄÜ£¬¸ÄÐÔ¾úË¿Çò¿ÉÒÔ×÷ΪÁ¼ºÃµÄÉúÎïÔØÌåÓÃÓÚÉúÎïÇ¿»¯¡£
Abstract:
After modifying and strengthening of mycelial pellets formed of Aspergillus niger Y3 by bioflocculant, the mycelial pellets were used as bio-carriers to immobilize aerobic denitrifying bacterium T13 (Pseudomonas sp. T13). Removing capabilities of total nitrogen (TN) and microflora activities of mycelial pellets before and after immobilizing of Pseudomonas sp. T13 were studied, and the influence of immobilization on the denitrification effect strengthened by biological factors was analyzed. The results showed that, the removal efficiency of mycelial pellets in removing TN was effectively improved after immobilizing of Pseudomonas sp. T13. The mycelial pellets showed the best effect in TN removing when the mass-volume ratio of modified mycelial pellets (wet weight) to T13 bacterial suspension (3.5¡Á108 CFU/ml) was 1¡Ã15. Photograph and scanning electron microscope (SEM) images of modified mycelial pellets after immobilizing of Pseudomonas sp. T13 revealed that, the T13 bacteria attached on the surface of mycelial pellets, and the structure of modified mycelial pellets maintained firm and intact after continuous cultivation for 45 days. Results of Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix (EEM) suggested that, extracellular polymer substances (EPS) played an important role in the process of immobilization of T13 by modified mycelial pellets. The structures formed by entangling structure of mycelial pellets provided strong mechanic structure, and had large specific surface area and fine mass transfer performance. Modified mycelial pellets can be used as good bio-carrier for biomass immobilization.

²Î¿¼ÎÄÏ×/References:

[1]Íõ½¨·¼,ÕÔÇìÁ¼,ÁÖ٥٩, µÈ. ÉúÎïÇ¿»¯¼¼Êõ¼°ÆäÔÚ·ÏË®ÉúÎï´¦ÀíÖеÄÓ¦ÓÃ[J]. »·¾³¹¤³Ìѧ±¨, 2007, 1(9) :40-45.
[2]³ÂÈʽÜ,лÓí,¾£ÕØǬ. ÎÛË®ÐÂÐÍÉúÎïÍѵªÇ¿»¯¼¼ÊõÑо¿½øÕ¹[J]. Ó¦Óû¯¹¤, 2020, 49(8): 2075-2079.
[3]BOUABIDI Z B, EL-NAAS M H, ZHANG Z. Immobilization of microbial cells for the biotreatment of wastewater: a review[J]. Environmental Chemistry Letters, 2019, 17: 241-257.
[4]ÕÅæÃÔÂ. ºÃÑõ·´Ïõ»¯¾úµÄɸѡ¼°Æä¹Ì¶¨»¯Ç¿»¯Å©´åÉú»îÎÛË®ÍѵªÑо¿[D]. ÉϺ££º»ª¶«Ê¦·¶´óѧ, 2020.
[5]ÐÜÕñºþ,Ëï´äÕä,ÁõÇà´º. ²»Í¬ÔØÌå¹Ì¶¨»¯Ôå¾ú¹²ÉúϵͳµÄÍѵª³ýÁ×Ч¹û[J]. »·¾³¿ÆѧÓë¼¼Êõ, 2005, 28(1): 82-84£¬119.
[6]ÔÀÑÞÀû. ´ó¿×¾Û°±õ¥ÔØÌå¹Ì¶¨»¯Î¢ÉúÎï¼°ÆäÎÛË®´¦ÀíÑо¿[J]. À¼ÖÝ£ºÀ¼ÖÝ´óѧ.
[7]JIM NEZ-P REZ M V, S NCHEZ-CASTILLO P, ROMERA O, et al. Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure[J]. Enzyme & Microbial Technology, 2004, 34(5): 392-398.
[8]ÀîÀö. ÉúÎïÖÊÌ¿¸ÄÐÔ¼°ÆäÓë΢ÉúÎïÁªºÏÍѵª³ýÁ×Ñо¿[D]. ÄϾ©£ºÄϾ©´óѧ, 2015.
[9]FU Y, VIRARAGHAVAN T. Fungal decolorization of dye wastewaters:a review[J]. Bioresource Technology, 2001, 79(3): 251-262.
[10]TA ÿðþ ‰C TAN E, ERTURUL S£¬D¦ZNMEZ G.Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor[J]. Bioresource Technology, 2010,101(3): 870-876.
[11]ZHANG S, LI A, CUI D, et al. Performance of enhanced biological SBR process for aniline treatment by mycelial pellet as biomass carrier[J]. Bioresource Technology, 2011, 102(6): 4360-4365.
[12]WANG J N, LI A, YANG J X, et al. Mycelial pellet as the biomass carrier for semi-continuous production of bioflocculant[J]. Rsc Advances, 2013, 40(3): 18414-18423.
[13]ZHAO L, CAO G L, WANG A J, et al. Enhanced bio-hydrogen production by immobilized Clostridium sp T2 on a new biological carrier[J]. International Journal of Hydrogen Energy, 2012, 37(1): 162-166.
[14]MURADOV N, TAHA M, MIRANDA A F, et al. Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production[J]. Biotechnol Biofuels, 2015, 8(1):24.
[15]ÕÅ˹. »ìºÏ¾úË¿ÇòÐγɻúÀí¼°Æä¾»»¯Ð§ÄÜÑо¿[D]. ¹þ¶û±õ£º¹þ¶û±õ¹¤Òµ´óѧ, 2008.
[16]ÕÅ˹. ¾úË¿ÇòÉúÎïÔØÌåµÄ¹¹½¨¼°ÆäÇ¿»¯·ÏË®´¦ÀíЧÄÜÑо¿[D]. ¹þ¶û±õ£º¹þ¶û±õ¹¤Òµ´óѧ, 2011.
[17]ÍõÇ¿. ´ÅÇ¿»¯ºÃÑõ·´Ïõ»¯¾úµÄÉúÎïÍѵª»úÖÆÓëЧÄÜ[D]. ¹þ¶û±õ£º¹þ¶û±õ¹¤Òµ´óѧ, 2010.
[18]Íõ½ðÄÈ. ²úÐõ¾úAgrobacterium tumefaciens F2ÀûÓûìºÏ̼Դ°ëÁ¬Ðø·¢½ÍÖƱ¸ÉúÎïÐõÄý¼Á[D]. ¹þ¶û±õ£º¹þ¶û±õ¹¤Òµ´óѧ, 2014.
[19]ËïÐã«h,ÌÆÖé,ÑîÐÂƼ. »îÐÔÎÛÄà°ûÍâ¶à¾ÛÎïÌáÈ¡·½·¨µÄ±È½Ï[J]. »·¾³¿Æѧ, 2018,39(7):3306-3313.
[20]LOWRY O H, ROSEBROUGH N J, FARR A L, et al. ¸£ÁÖ·ÓÊÔ¼Á·¨²â¶¨µ°°×ÖÊ[J]. ʳƷÓëÒ©Æ·. 2011, 13(3): 147-151.
[21]Å£Ö¾Çä,Áõ½¨ÈÙ. TTC-ÍÑÇâø»îÐԲⶨ·¨µÄ¸Ä½ø[J]. ΢ÉúÎïѧͨ±¨, 1994, 21(1): 59-61.
[22]JOHNSTON I R. The composition of the cell wall of Aspergillus niger[J]. Biochemical Journal, 1965, 96(3): 651-658.
[23]GMEZ R, SCHNABEL I, GARRIDO J. Pellet growth and citric acid yield of Aspergillus niger 110[J]. Enzyme Microb Technol, 1988, 10(3): 188-191.
[24]FLACHNER B, BRUMBAUER A, RECZEY K. Stabilization of ¦Â-glucosidase in Aspergillus phoenicis QM 329 pellets[J]. Enzyme & Microbial Technology, 1999, 24(6): 362-367.
[25]LIANG Z, LI W, YANG S, et al. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge[J]. Chemosphere, 2010, 81(5): 626-632.
[26]LEONE L, LORING J, SJ BERG S, et al. Surface characterization of the Gram-positive bacteria Bacillus subtilis-an XPS study[J]. Surface & Interface Analysis, 2010, 38(4): 202-205.
[27]PARIKH S J, JON C. ATR-FTIR spectroscopy reveals bond formation during bacterial adhesion to iron oxide[J]. Langmuir, 2006, 22(20): 8492-8500.
[28]CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2015, 37(24): 5701-5710.
[29]SHENG G P, YU H Q. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy[J]. Water Res, 2006, 40(6): 1233-1239.
[30]YAMASHITA Y , TANOUE E . Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Marine Chemistry, 2003, 82(3): 255-271.
[31]PONS M N L, BONT S, POTIER O. Spectral analysis and fingerprinting for biomedia characterisation[J]. J Biotechnol, 2004, 113(13): 211-230.
[32]ZHAO L, CAO G L, YAO J, et al. Optimization of immobilization parameters of Thermoanaerobacterium thermosaccharolyticum W16 on a new carrier for enhanced hydrogen production[J]. Rsc Advances, 2012, 2(19): 7391-7395.
[33]DONG Y, LI P, HE J, et al. Comparison of two mycelial pellets formation methods to immobilize O-chlorophenol degradation bacteria[J]. Acta Microbiologica Sinica, 2016, 56(5): 753-764.
[34]ÁÖʤºì,ÌïÓÀÇ¿,ÅËÏþ÷,µÈ. »ìºÏ¾úË¿ÇòµÄÖƱ¸ÒÔ¼°¶Ô¸Õ¹ûºì½µ½âÐÔÄܵÄÑо¿[J]. ¹¤ÒµË®´¦Àí, 2018, 38(12): 39-41.
[35]Ñî×ÚÕþ,ÐíÎÄ˧,ÎâÖ¾¹ú,µÈ. ΢ÉúÎï¹Ì¶¨»¯¼°ÆäÔÚ»·¾³ÎÛȾÖÎÀíÖеÄÓ¦ÓÃÑо¿½øÕ¹[J]. ΢ÉúÎïѧͨ±¨, 2020, 47(12): 333-347.
[36]ÍõöÎ,Íõѧ½­,²·Ôƽà,µÈ. Ư¸¡Ð͹̶¨»¯Î¢ÉúÎïÈ¥³ýº£ÑóʯÓÍÎÛȾÎïÑо¿[J]. Ë®´¦Àí¼¼Êõ, 2014, 40(9): 48-51.
[37]ÌïÐã÷,ÍõÏþÀö,ÅíÊ¿ÌÎ,µÈ. ÒÒËá¸ÄÐÔÜÑÂéÏËά¹Ì¶¨»¯Î¢ÉúÎïµÄʯÓÍÎÛȾÐÞ¸´Ñо¿[J]. Ó¦Óû¯¹¤, 2019, 48(9): 2045-2049.
[38]ÕÔ³©,ÍõÎÄÕÑ,ÐìÆÚÓÂ. ȺÌå¸ÐÓ¦´ãÃð¾úµÄ·ÖÀë¼°ÆäĤÎÛȾ¿ØÖÆÐÔÄÜ[J]. »·¾³¿Æѧ, 2016, 37(12): 4720-4726.

±¸×¢/Memo

±¸×¢/Memo:
ÊÕ¸åÈÕÆÚ£º2021-08-13»ù½ðÏîÄ¿£º¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÏîÄ¿£¨52070054£©×÷Õß¼ò½é£º¿×ÏéÕð£¨1989-£©£¬ÄУ¬°²»ÕËÞÖÝÈË£¬²©Ê¿Ñо¿Éú£¬Ñо¿·½ÏòΪ»·¾³Î¢ÉúÎï¡¢ÉúÎïÇ¿»¯¼¼Êõ¡££¨E-mail£©kxz_19890510@163.comͨѶ×÷ÕߣºÂí·Å£¬£¨E-mail£©mafang@hit.edu.cn
¸üÐÂÈÕÆÚ/Last Update: 2022-05-07