参考文献/References:
[1]ADAMS M L, ZHAO F J, MCGRATH S P, et al. Predicting cadmium concentrations in wheat and barley grain using soil properties[J]. Journal of Environmental Quality, 2004, 33(2): 532-541.
[2]BRUS D J, LI Z B, SONG J, et al. Predictions of spatially averaged cadmium contents in rice grains in the Fuyang valley, PR China[J]. Journal of Environmental Quality, 2009, 38(3): 1126-1136.
[3]TANG X, LI Q, WU M, et al. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China[J]. Journal of Environmental Management, 2016, 181: 646-662.
[4]胡红青,黄益宗,黄巧云,等. 农田土壤重金属污染化学钝化修复研究进展[J]. 植物营养与肥料学报, 2017, 23(6): 1671-1685.
[5]刘梦丽,蒋明,李博,等. 农田土壤镉污染钝化修复研究进展[J]. 云南农业大学学报, 2018, 33(2): 350-359.
[6]张迪,丁爱芳. 组配钝化剂对镉铅复合污染土壤修复效果研究[J]. 农业环境科学学报, 2018, 37(12): 2718-2726.
[7]李剑睿,徐应明,林大松,等. 水分调控和钝化剂处理对水稻土镉的钝化效应及其机理[J]. 农业环境科学学报, 2014, 33(7): 1316-1321.
[8]丁淑芳,谢正苗,吴卫红,等. 含磷物质原位化学钝化重金属污染土壤的研究进展[J]. 安徽农业科学, 2012, 40(35): 17093-17097.
[9]CUI H B, ZHOU J, ZHAO Q G, et al. Fractions of Cu, Cd, and enzyme activities in a contaminated soil as affected by applications of micro- and nanohydroxyapatite[J]. Journal of Soils and Sediments, 2013, 13(4): 742-752.
[10]雷鸣,曾敏,胡立琼,等. 不同含磷物质对重金属污染土壤-水稻系统中重金属迁移的影响[J]. 环境科学学报, 2014, 34(6): 1527-1533.
[11]陈盾,王小兵,汪晓丽,等. 镉污染红壤的钝化剂筛选及钝化效果[J]. 生态与农村环境学报, 2020, 36(1): 115-120.
[12]CUI H B, YANG X, XU L, et al. Effects of goethite on the fractions of Cu, Cd, Pb, P and soil enzyme activity with hydroxyapatite in heavy metal-contaminated soil[J]. RSC Advances, 2017, 7(72): 45869-45877.
[13]付煜恒,张惠灵,王宇,等. 磷酸盐对铅镉复合污染土壤的钝化修复研究[J]. 环境工程, 2017, 35(9): 176-180.
[14]CAO X D, WAHBI A, MA L, et al. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid[J]. Journal of Hazardous Materials, 2009, 164(2): 555-564.
[15]李楠. 重金属形态与土壤酶活性关系研究[D]. 西安: 西安科技大学, 2015.
[16]杜志敏,郝建设,周静,等. 四种改良剂对铜和镉复合污染土壤的田间原位修复研究[J]. 土壤学报, 2012, 49(3): 508-517.
[17]陈芬,余高,谭杰斌,等. 生态有机型土壤改良剂对油菜生育期土壤酶活性的影响[J]. 浙江农业科学, 2020, 61(1): 32-33,36.
[18]王琪,张永波,贾亚敏,等.有机肥和生物炭对重金属污染农田土壤肥力的影响[J].江苏农业科学,2020,48(1):263-267.
[19]高晶霞,吴雪梅,牛勇琴,等. 辣根素水乳剂对连作辣椒生长及土壤酶活性的影响[J].江苏农业学报,2021,37(1):116-120.
[20]邱全敏,罗东林,罗乐洋,等. 施用土壤pH改良剂对弱碱性荔枝园土壤性质及荔枝生长的影响[J].南方农业学报,2020,51(7):1545-1552.
[21]BLASER P, ZIMMERMANN S, LUSTER J, et al. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils[J]. Science of the Total Environment, 2000, 249: 257-280.
[22]张咏梅,周国逸,吴宁. 土壤酶学的研究进展[J]. 热带亚热带植物学报, 2004,12 (1): 83-90.
[23]WU W C, WU J H, LIU X W, et al. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure[J]. Ecotoxicology and Environmental Safety, 2017, 143: 322-329.
[24]陈彦芳,曹柳,马建华,等. 土壤重金属复合污染钝化修复对酶活性的影响[J].河南大学学报, 2020, 50(1): 1-10.
[25]孟庆峰,杨劲松,姚荣江,等. 单一及复合重金属污染对土壤酶活性的影响[J]. 生态环境学报, 2012, 21(3): 545-550.
[26]王巧红,董金霞,张君,等. Cd污染对3种类型土壤酶活性及Cd形态分布的影响[J].四川农业大学学报, 2017, 35(3): 339-344.
[27]LIU M H, CHE Y Y, WANG L Q, et al. Rice straw biochar and phosphorus inputs have more positive effects on the yield and nutrient uptake of lolium multiflorum than arbuscular mycorrhizal fungi in acidic Cd-contaminated soils[J]. Chemosphere, 2019, 235: 32-39.
[28]XU Y P, SCHWARTZ F W, TRAINA S J. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces[J]. Environmental Science & Technology, 1994, 28(8): 1472-1480.
[29]HAMID Y, TANG L, LU M, et al. Assessing the immobilization efficiency of organic and inorganic amendments for cadmium phytoavailability to wheat[J]. Journal of Soils and Sediments, 2019, 19(11): 3708-3717.
[30]ZENG X X, XU H, LU J J, et al. The immobilization of soil cadmium by the combined amendment of bacteria and hydroxyapatite[J]. Scientific Reports, 2020, 10(1): 2189.
[31]LU A X, ZHANG S Z, SHAN X Q. Time effect on the fractionation of heavy metals in soils[J]. Geoderma, 2005, 125(3): 225-234.
[32]RAJAIE M, KARIMIAN N, MAFTOUN M, et al. Chemical forms of cadmium in two calcareous soil textural classes as affected by application of cadmium-enriched compost and incubation time[J]. Geoderma, 2006, 136(3): 533-541.
[33]WU C F, YANG S H, ZHANG H B, et al. Chemical forms of cadmium in a calcareous soil treated with different levels of phosphorus-containing acidifying agents[J]. Soil Research, 2015, 53(1): 105-111.
[34]鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30-163.
[35]TESSIER A P, CAMPBELL P C, BISSON M X. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
[36]李振高,骆永明,滕应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008:155-166.
[37]崔雪梅,郭海如,李春生,等. 基于主成分分析的油菜幼苗铝毒机制研究[J]. 河南农业科学, 2016, 45(5): 52-55.
[38]刘弘禹,张玉杰,陈宁怡,等. 羟基磷灰石表面特性差异对重金属污染土壤固化修复的影响[J].环境化学,2018,37(9):1961-1970.
[39]SESHADRI B, BOLAN N S, WIJESEKARA H, et al. Phosphorus-cadmium interactions in paddy soils[J]. Geoderma, 2016, 270: 43-59.
[40]ZHU H, WU C F, WANG J, et al. The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents[J]. Environmental Science and Pollution Research, 2018, 25(18): 17499-17508.
[41]邢维芹,张纯青,周冬,等. 磷酸盐、石灰和膨润土降低冶炼厂污染石灰性土壤重金属活性的研究[J]. 土壤通报, 2019, 50(5): 1245-1252.
[42]吴求刚,王彦君,赵恒,等. 淹水条件下赤铁矿对羟基磷灰石钝化土壤铜镉的影响[J]. 生态与农村环境学报, 2020, 36(6): 796-802.
[43]崔红标,何静,吴求刚,等. 不同粒径羟基磷灰石对污染土壤铜镉磷有效性和酶活性的影响[J]. 环境科学研究, 2017, 30(7): 1146-1153.
[44]NAIDU R, KOOKANA R S, SUMNER M E, et al. Cadmium sorption and transport in variable charge soils: A review[J]. Journal of Environmental Quality, 1997, 26: 602-617.
[45]GRAY C W, MCLAREN R G, ROBERTS A C, et al. Sorption and desorption of cadmium from some New Zealand soils: effect of pH and contact time[J]. Soil Research, 1998, 36(2): 199-216.
[46]DICK W A, CHENG L, WANG P. Soil acid and alkaline phosphatase activity as pH adjustment indicators[J]. Soil Biology & Biochemistry, 2000, 32(13): 1915-1919.
[47]冯慧芳,余明,薛立. 外源性氮磷添加及林分密度对大叶相思林土壤酶活性的影响[J]. 生态学报, 2020, 40(14): 4894-4902.