参考文献/References:
[1]FEI W J, YANG S Q, HU J, et al. Research advances of WRINKLED1 (WRI1) in plants[J]. Functional Plant Biology, 2020, 47(3):185-194.
[2]SHOCKEY J, REGMI A, COTTON K, et al. Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis[J]. Plant Physiology, 2015, 170(1):163-179.
[3]MISRA A, KHAN K, NIRANJAN A, et al. Heterologous expression of two GPATs from Jatropha curcas alters seed oil levels in transgenic Arabidopsis thaliana[J]. Plant Science, 2017, 263(2):79-88.
[4]ZHENG P Z, ALLEN W B, ROESLER K, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize[J]. Nature Genetics, 2008, 40(3):367-372.
[5]FOCKS N, BENNING C. WRINKLED1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism[J]. Plant Physiology, 1998, 118(1):91-101.
[6]BAUD S, WUILLME S, TO A, et al. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis[J]. Plant Journal, 2009, 60(6):933-947.
[7]SHEN B, ALLEN W B, ZHENG P Z, et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize[J]. Plant Physiology, 2010, 153(3): 980-987.
[8]GUO W, CHEN L M, CHEN H F, et al. Overexpression of GmWRI1b in soybean stably improves plant architecture and associated yield parameters, and increases total seed oil production under field conditions[J]. Plant Biotechnology Journal, 2020, 18(8): 1639-1641.
[9]LIU J, WEI H, ZHAN G M, et al. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus[J]. Plant Physiology and Biochemistry, 2010, 48(1):9-15.
[10]EWUNIE G A, MORKEN J, LEKANG O I, et al. Factors affecting the potential of Jatropha curcas for sustainable biodiesel production: a critical review[J]. Renewable and Sustainable Energy Reviews, 2020,137(2):1-18.
[11]AKHTER D, QIN R, NATH U K, et al. A rice gene, OsPL, encoding a MYB family transcription factor confers anthocyanin synthesis, heat stress response and hormonal signaling[J]. Gene, 2019, 699:62-72.
[12]WEI Q, LI J, ZHANG L, et al. Cloning and characterization of a β-ketoacyl-acyl carrier protein synthase Ⅱ from Jatropha curcas[J]. Journal of Plant Physiology, 2012, 169(8):816-824.
[13]LI D L, HE Y J, LI S H, et al. Genome-wide characterization and expression analysis of AP2/ERF genes in eggplant (Solanum melongena L.)[J]. Plant Physiology and Biochemistry, 2021, 167(3):492-503.
[14]MA W, KONG Q, VINCENT A, et al. WRINKLED1, A ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp[J]. PLoS One, 2013, 8(7):1-13.
[15]王玲,刘晓伟,江纳,等.蔓花生AP2基因家族的生物信息学分析[J].江苏农业科学,2020,48(14):65-77.
[16]BAUD S, MENDOZA M S, TO A, et al. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis[J]. Plant Journal, 2007, 50(5):825-838.
[17]BATES P D, STYMNE S, OHLROGGE J. Biochemical pathways in seed oil synthesis[J]. Current Opinion in Plant Biology, 2013, 16(3):358-364.
[18]BATES P D, FATIHI A, SNAPP A R, et al. Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols[J]. Plant Physiology, 2012, 160(3):1530-1539.
[19]BATES P D, BROWSE J. The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering[J]. Frontiers in Plant Science, 2012, 3:147.