参考文献/References:
[1]王玲,邓敏姬. 紫甘薯天然红色素的提取及其稳定性研究[J]. 食品科技, 2011, 36(4): 179-183.
[2]SHAN Q, ZHENG Y L, LU J, et al. Purple sweet potato color ameliorates kidney damage via inhibiting oxidative stress mediated NLRP3 inflammasome activation in high fat diet mice[J]. Food and Chemical Toxicology, 2014, 69:339-346.
[3]SUN H N, MU T H, LIU X L, et al. Purple sweet potato (Ipomoea batatas L.) anthocyanins: preventive effect on acute and subacute alcoholic liver damage and dealcoholic effect[J]. Journal of Agricultural and Food Chemistry, 2014, 62:2364-2373.
[4]TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids[J]. The Plant Journal, 2008, 54(4): 733-749.
[5]PETRUSSA E, BRAIDOT E, ZANCANI M, et al. Plant flavonoids-biosynthesis, transport and involvement in stress responses[J]. International Journal of Molecular Sciences, 2013, 14(7):14950-14973.
[6]宫硖,薛静,张晓东. 植物花青素合成途径中的调控基因研究进展[J]. 生物技术进展, 2011, 1(6):381-390.
[7]兰岚,周婵媛,唐乐,等. 甘薯营养价值及综合开发利用[J]. 现代化农业, 2016 (12): 27-30.
[8]高闰飞. 利用形态学和SSR标记分析中国紫心甘薯育成品种遗传多样性[D]. 北京:中国农业科学院,2019: 11-12.
[9]PARK S C, KIM Y H, JI C Y, et al. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions[J]. PLoS One, 2012, 7(12): e51502.
[10]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct-method[J]. Methods, 2001, 25(4): 402-408.
[11]FU Y F, MA L L, QIU F, et al. A prenyltransferase gene confirmed to be a carotenogenic CRTE gene from sweet potato[J]. Journal of Genetics and Genomics, 2014, 41(11): 613-616.
[12]李臣,后猛,马猛,等. 甘薯块根熟化过程中麦芽糖变化及其影响因素研究进展[J].江苏农业学报,2021,37(2):539-544.
[13]周志林,唐君,曹清河,等. 淀粉专用型甘薯品质形成规律及其与主要农艺性状的相关性[J]. 江苏农业学报,2020,36(2):277-283.
[14]HU Y J, DENG L Q, CHEN J W, et al. An analytical pipeline to compare and characterise the anthocyanin antioxidant activities of purple sweet potato cultivars[J]. Food Chemistry, 2016, 194: 46-54.
[15]吴洁,沈学善,屈会娟,等.紫肉食用型甘薯品种川紫薯2号优化栽培技术[J].江苏农业科学,2020,48(16):120-125.
[16]王辉,牟琴,聂廷,等.基于相关性与主成分分析法综合评价不同品种甘薯脆片加工适宜性[J].江苏农业科学,2020,48(6):173-179.
[17]GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7): 644-652.
[18]韦丽君,俞奔驰,宋恩亮,等. 基于转录组测序的木薯性别决定相关基因挖掘[J].南方农业学报,2020,51(8):1785-1796.
[19]鞠烨,江建平,尹增芳,等. 孝顺竹笋箨全长转录组测序分析[J]. 南京林业大学学报(自然科学版), 2020,44(6):175-183.
[20]WU Z G, JIANG W, MANTRI N, et al. Transciptome analysis reveals flavonoid biosynthesis regulation and simple sequence repeats in yam (Dioscorea alata L.) tubers[J]. BMC Genomics, 2015, 16: 346.
[21]GONZLEZ M, SALAZAR E, CASTILLO J, et al. Genetic structure based on EST-SSR: a putative tool for fruit color selection in Japanese plum (Prunus salicina L.) breeding programs[J]. Molecular Breeding, 2016, 36(6): 68.
[22]SHANGGUAN L F, MU Q, FANG X, et al. RNA-Sequencing reveals biological networks during table grapevine (‘Fujiminori′) fruit development[J]. PLoS One, 2017, 12(1): e0170571.
[23]WANG Z Y, FANG B P, CHEN J Y, et al. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas) [J]. BMC Genomics, 2010, 11(1):726-740.
[24]XIE F L, BURKLEW C E, YANG Y F, et al. De novo sequencing and a comprehensive analysis of purple sweet potato (Ipomoea batatas L.) transcriptome[J]. Planta, 2012, 236(1): 101-113.
[25]LI R J, HONG Z, CHEN K, et al. De novo transcriptome sequencing of the orange-fleshed sweet potato and analysis of differentially expressed genes related to carotenoid biosynthesis[J]. International Journal of Genomics, 2015, 2015(13): 1-10.
[26]LIU Y H, LIN-WANG K, DENG C, et al. Comparative transcriptome analysis of white and purple potato to identify genes involved in anthocyanin biosynthesis[J]. PLoS One, 2015, 10: e0129148.
[27]YANG Y N, YAO G F, ZHENG D, et al. Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration[J]. Plant Cell Reports, 2015, 34:189-198.
[28]WEI H R, CHEN X, ZONG X J, et al. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunusavium L.) [J]. PLoS One, 2015, 10: e0121164.
[29]ZHOU W, GONG Y F, LU X, et al. Molecular cloning and characterization of a flavonoid 3′-hydroxylase gene from purple-fleshed sweet potato (Ipomoea batatas) [J]. Molecular Biology Reports, 2012, 39(1):295-302.
[30]ZHOU W, HUANG C T, GONG Y F, et al. Molecular cloning and expression analysis of an ANS gene encoding anthocyanidin synthase from purple-fleshed sweet potato [Ipomoea batatas (L.) Lam][J]. Plant Molecular Biology Reporter, 2010, 28(1): 112-121.
[31]GUO J Y, ZHOU W, LU Z L, et al. Isolation and functional analysis of chalcone isomerase gene from purple-fleshed sweet potato[J]. Plant Molecular Biology Reporter, 2015, 33(5):1451-1463.
[32]WANG H X, FAN W J, LI H, et al. Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses[J]. PLoS One, 2013, 8(11): e78484.
[33]SUN C, LI Y, WU Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis[J]. BMC Genomic, 2010, 11:262.
[34]FELLER A, MACHEMER K, BRAUN E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. The Plant Journal, 2011, 66:94-116.
[35]ZHAO L, GAO L P, WANG H X, et al. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis[J]. Functional and Integrative Genomics, 2013, 13:75-98.
[36]CHU H, JEONG J C, KIM W J, et al. Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis[J]. Physiologia Plantarum, 2013, 148: 189-199.
[37]AN C H, LEE K W, LEE S H, et al. Heterologous expression of IbMYB1a by different promoters exhibits different patterns of anthocyanin accumulation in tobacco[J]. Plant Physiology and Biochemistry, 2015, 89: 1-10.
[38]PARK S C, KIM Y H, KIM S H, et al. Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity[J]. Physiologia Plantarum, 2015, 153(4): 525-537.
[39]WU R M, WANG T C, MCGIE T, et al. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time[J]. Journal of Experimental Botany, 2014, 65:4985-4995.
[40]ZHOU H, LIN-WANG K, WANG H L, et al. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors[J]. The Plant Journal, 2015, 82:105-121.
[41]JIANG Y H, LIU C H, YAN D, et al. MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar ‘Granny Smith’[J]. Journal of Experimental Botany, 2017, 68:1055-1069.
[42]ZHANG J, XU H F, WANG N, et al. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple[J]. Plant Molecular Biology, 2018, 98:205-218.
[43]LIU C C, CHI C, JIN L J, et al. The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato[J]. Plant Cell and Environment, 2018, 41:1762-1775.
[44]HU B, ZHAO J T, LAI B, et al. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn[J]. Plant Cell Reports, 2016, 35(4): 831-843.
[45]LUO H F, DAI C, LI Y P, et al. Reduced anthocyanins in petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry[J]. Journal of Experimental Botany, 2018, 69:2595-2608.
[46]JIANG S H, CHEN M, HE N B, et al. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple[J]. Horticulture Research, 2019, 6:40.
[47]LIU Y F, QI Y W, ZHANG A L, et al. Molecular cloning and functional characterization of AcGST1, an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis) [J]. Plant Molecular Biology, 2019, 100:451-465.
[48]ZHAO Y, DONG W Q, ZHU Y C, et al. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach[J]. Plant Biotechnology Journal, 2020, 18:1-12.
[49]CONN S, CURTIN C, BZIER A, et al. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins[J]. Journal of Experimental Botany, 2008, 59(13): 3621-3634.
[50]PREZ-DAZ R, MADRID-ESPINOZA J, SALINAS-CORNEJO J, et al. Differential roles for VviGST1, VviGST3, and VviGST4 in proanthocyanidin and anthocyanin transport in Vitis vinifera[J]. Frontiers in Plant Science, 2016, 7:1166.
[51]FRANCISCO R M, REGALADO A, AGEORGES A, et al. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-glucosides[J]. The Plant Cell, 2013, 25(5): 1840-1854.
[52]GOMEZ C, TERRIER N, TORREGROSA L, et al. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters[J]. Plant Physiology, 2009, 150(1): 402-415.
[53]吴远双,宋毅豪,吴宝尧,等. 植物多药和有毒化合物排出转运蛋白研究进展[J]. 广西植物, 2018, 38(11):128-138.
[54]KOU MENG, LIU Y J, LI Z Y, et al. A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration[J]. Plant Physiology and Biochemistry, 2019, 135: 395-403.
相似文献/References:
[1]冯娇,王武,侯旭东,等.基于转录组测序技术探究GA3和CPPU抑制葡萄果锈产生的机理[J].江苏农业学报,2017,(04):895.[doi:doi:10.3969/j.issn.1000-4440.2017.04.026]
FENG Jiao,WANG Wu,HOU Xu-dong,et al.Underlying mechanism of GA3 and CPPU inhibiting grape fruit russet discovered based on transcriptome sequencing[J].,2017,(02):895.[doi:doi:10.3969/j.issn.1000-4440.2017.04.026]
[2]李隐侠,冯小品,张莉,等.热应激前后湖羊下丘脑差异表达新基因的筛选与注释[J].江苏农业学报,2019,(02):363.[doi:doi:10.3969/j.issn.1000-4440.2019.02.017]
LI Yin-xia,FENG Xiao-pin,ZHANG Li,et al.Screening and annotation of novel genes differentially expressed in hypothalamus before and after heat stress in Hu sheep[J].,2019,(02):363.[doi:doi:10.3969/j.issn.1000-4440.2019.02.017]
[3]王亚丽,陈煜东,王益军.高世代回交玉米矮秆种质的转录组分析[J].江苏农业学报,2021,(02):280.[doi:doi:10.3969/j.issn.1000-4440.2021.02.002]
WANG Ya-li,CHEN Yu-dong,WANG Yi-jun.Transcriptome analysis on the advanced backcross population of maize dwarf germplasm[J].,2021,(02):280.[doi:doi:10.3969/j.issn.1000-4440.2021.02.002]
[4]徐鹿,罗光华,金瑜剑,等.转录组测序分析毒死蜱与醚菊酯混配对二化螟毒杀的增效机制[J].江苏农业学报,2021,(02):317.[doi:doi:10.3969/j.issn.1000-4440.2021.02.006]
XU Lu,LUO Guang-hua,JIN Yu-jian,et al.Study on the synergistic mechanism of chlorpyrifos and ethofenprox mixture in poisoning Chilo suppressalis based on transcriptome sequencing[J].,2021,(02):317.[doi:doi:10.3969/j.issn.1000-4440.2021.02.006]
[5]殷剑美,张铅,蒋璐,等.山药块茎发育阶段基因共表达网络构建及阶段特异性分析[J].江苏农业学报,2022,38(01):30.[doi:doi:10.3969/j.issn.1000-4440.2022.01.004]
YIN Jian-mei,ZHANG Qian,JIANG Lu,et al.Stage-specific and weighted gene co-expression network analyses of yam (Dioscorea alata L.) tuber growth[J].,2022,38(02):30.[doi:doi:10.3969/j.issn.1000-4440.2022.01.004]
[6]段修军,孙国波,张蕾,等.基于RNA-Seq鉴定黑羽番鸭肉质风味差异的候选基因[J].江苏农业学报,2022,38(03):739.[doi:doi:10.3969/j.issn.1000-4440.2022.03.020]
DUAN Xiu-jun,SUN Guo-bo,ZHANG Lei,et al.Identification of candidate genes related to meat flavor in black Muscovy duck based on RNA-Seq[J].,2022,38(02):739.[doi:doi:10.3969/j.issn.1000-4440.2022.03.020]
[7]陈亚辉,张师瑒,杨庆山,等.多枝柽柳叶片响应NaCl胁迫的转录组分析[J].江苏农业学报,2022,38(05):1188.[doi:doi:10.3969/j.issn.1000-4440.2022.05.005]
CHEN Ya-hui,ZHANG Shi-yang,YANG Qing-shan,et al.Transcriptome analysis of Tamarix ramosissima leaves in response to NaCl stress[J].,2022,38(02):1188.[doi:doi:10.3969/j.issn.1000-4440.2022.05.005]
[8]朱淑斌,徐盼,周春宝,等.基于RNA-Seq技术筛选姜曲海猪子宫和卵巢发育相关基因[J].江苏农业学报,2024,(01):130.[doi:doi:10.3969/j.issn.1000-4440.2024.01.014]
ZHU Shu-bin,XU Pan,ZHOU Chun-bao,et al.Screening of functional genes associated with uterus and ovary development in Jiangquhai pig based on RNA-Seq technology[J].,2024,(02):130.[doi:doi:10.3969/j.issn.1000-4440.2024.01.014]