[1]后猛,李臣,宋炜涵,等.紫肉甘薯及其突变体花青素积累差异的比较转录组分析[J].江苏农业学报,2022,38(02):313-325.[doi:doi:10.3969/j.issn.1000-4440.2022.02.004]
 KOU Meng,LI Chen,SONG Wei-han,et al.Comparative transcriptome analysis on anthocyanin accumulation differences in purple-fleshed sweetpotatoes and their mutants[J].,2022,38(02):313-325.[doi:doi:10.3969/j.issn.1000-4440.2022.02.004]
点击复制

紫肉甘薯及其突变体花青素积累差异的比较转录组分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年02期
页码:
313-325
栏目:
遗传育种·生理生化
出版日期:
2022-04-30

文章信息/Info

Title:
Comparative transcriptome analysis on anthocyanin accumulation differences in purple-fleshed sweetpotatoes and their mutants
作者:
后猛1李臣12宋炜涵1张允刚1李强1
(1.江苏徐淮地区徐州农业科学研究所/中国农业科学院甘薯研究所/农业农村部甘薯生物学与遗传育种重点实验室,江苏徐州221131;2.江苏师范大学生命科学学院,江苏徐州221116)
Author(s):
KOU Meng1LI Chen12SONG Wei-han1ZHANG Yun-gang1LI Qiang1
(1.Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131,China;2.School of Life Science, Jiangsu Normal University, Xuzhou 221116, China)
关键词:
紫肉甘薯转录组测序花青素代谢差异表达基因
Keywords:
purple-fleshed sweetpotatotranscriptome sequencinganthocyanin metabolismdifferentially expressed genes
分类号:
S531
DOI:
doi:10.3969/j.issn.1000-4440.2022.02.004
文献标志码:
A
摘要:
紫肉甘薯因其块根中富含紫色花青素而得名。本研究以2组栽培种紫肉甘薯及其淡黄肉突变体为材料,基于甘薯转录组测序(RNA-seq)数据进行生物信息学分析。以|log2 FC|≥1且错误发现率(FDR)<0.01作为筛选标准,鉴定差异表达基因(DEGs),对DEGs进行GO功能分类和KEGG代谢通路分析,并采用实时荧光定量PCR(qRT-PCR)方法对测序结果进行验证。样品经转录组测序后,均获得超过8 Gb的高质量数据,拼接组装共得到164 427条Unigenes。在2组甘薯材料及其突变体中分别检测到2 262个和1 546个DEGs,其中有244个DEGs是2组甘薯材料共有的。GO功能分析发现,DEGs主要富集于苯丙氨酸解氨酶活性、着色、类黄酮生物合成过程、含花青素化合物生物合成过程等。KEGG通路分析发现,DEGs主要分布在苯丙素类生物合成、苯丙氨酸代谢、类黄酮生物合成和花青素生物合成等代谢通路。随机选择27个与花青素生物代谢相关的候选基因进行实时荧光定量PCR验证,表达模式与测序结果一致。将2组材料中候选基因的表达水平与花青素含量进行相关性分析,结果表明,花青素生物合成相关的候选基因PAL-1、CHS、ANS、CCoAOMT、GST-2、ABC-1、bHLH和WRKY-2的相对表达量与花青素积累量的相关性达到显著或极显著水平。表明,2个甘薯突变体材料块根薯肉紫色的缺失是由花青素的合成、转运和相关转录因子表达水平的降低共同引起的。通过转录组测序可以从中挖掘一些与花青素代谢相关的候选基因,为研究其在生物合成途径中的调控机制奠定基础。
Abstract:
Purple-fleshed sweetpotato (PESP) is famous for the rich storage of purple anthocyanins in its storage root. In this study, two groups of PFSP cultivated species and their mutants with light yellow flesh were used as materials, and bioinformatics analysis was conducted based on transcriptome sequencing (RNA-seq) data of sweetpotatoes.|log2FC |≥1 and FDR (False discovery rate)<0.01 were used as screening standards to identify differentially expressed genes (DEGs). Gene ontology (GO) functional classification and KEGG metabolic pathway analysis of DEGs were performed, and real-time quantitative PCR (qRT-PCR) method was used to verify the sequencing results. After transcriptome sequencing of the samples, more than eight Gb data with high quality were obtained for each sample, and a total of 164 427 Unigenes were obtained by splicing and assembling. 2 262 and 1 546 DEGs were detected respectively in two groups of sweetpotato materials and their mutants, among which 244 DEGs were shared between two groups of sweetpotato materials. Results of GO functional analysis showed that, DEGs mainly enriched in phenylalanine ammonia-lyase activity, pigmentation, flavonoid biosynthesis process and anthocyanin-containing compound biosynthesis process. Results of KEGG pathway analysis showed that, DEGs mainly distributed in metabolic pathways such as phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis and anthocyanin biosynthesis. In addition, 27 candidate genes related to anthocyanin biological metabolism were selected randomly for real-time quantitative PCR verification, and their expression patterns were found to be consistent with the sequencing results. Results of correlation analysis on gene expression level and anthocyanin content revealed that, relative expression levels of anthocyanin biosynthesis related candidate genes such as PAL-1, CHS, ANS, CCoAOMT, GST-2, ABC-1, bHLH and WRKY-2 were in significant or extremely significant correlation with anthocyanin accumulation. The results indicated that, the deficiency of purple color in the storage root flesh of two sweetpotato mutant materials was caused by the decrease of expression level of genes involved in anthocyanin synthesis, transport and related transcription factors. Some candidate genes related to anthocyanin metabolism can be found by transcriptome sequencing, which lays a foundation for study on their regulatory mechanism in biosynthesis pathways.

参考文献/References:

[1]王玲,邓敏姬. 紫甘薯天然红色素的提取及其稳定性研究[J]. 食品科技, 2011, 36(4): 179-183.
[2]SHAN Q, ZHENG Y L, LU J, et al. Purple sweet potato color ameliorates kidney damage via inhibiting oxidative stress mediated NLRP3 inflammasome activation in high fat diet mice[J]. Food and Chemical Toxicology, 2014, 69:339-346.
[3]SUN H N, MU T H, LIU X L, et al. Purple sweet potato (Ipomoea batatas L.) anthocyanins: preventive effect on acute and subacute alcoholic liver damage and dealcoholic effect[J]. Journal of Agricultural and Food Chemistry, 2014, 62:2364-2373.
[4]TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids[J]. The Plant Journal, 2008, 54(4): 733-749.
[5]PETRUSSA E, BRAIDOT E, ZANCANI M, et al. Plant flavonoids-biosynthesis, transport and involvement in stress responses[J]. International Journal of Molecular Sciences, 2013, 14(7):14950-14973.
[6]宫硖,薛静,张晓东. 植物花青素合成途径中的调控基因研究进展[J]. 生物技术进展, 2011, 1(6):381-390.
[7]兰岚,周婵媛,唐乐,等. 甘薯营养价值及综合开发利用[J]. 现代化农业, 2016 (12): 27-30.
[8]高闰飞. 利用形态学和SSR标记分析中国紫心甘薯育成品种遗传多样性[D]. 北京:中国农业科学院,2019: 11-12.
[9]PARK S C, KIM Y H, JI C Y, et al. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions[J]. PLoS One, 2012, 7(12): e51502.
[10]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct-method[J]. Methods, 2001, 25(4): 402-408.
[11]FU Y F, MA L L, QIU F, et al. A prenyltransferase gene confirmed to be a carotenogenic CRTE gene from sweet potato[J]. Journal of Genetics and Genomics, 2014, 41(11): 613-616.
[12]李臣,后猛,马猛,等. 甘薯块根熟化过程中麦芽糖变化及其影响因素研究进展[J].江苏农业学报,2021,37(2):539-544.
[13]周志林,唐君,曹清河,等. 淀粉专用型甘薯品质形成规律及其与主要农艺性状的相关性[J]. 江苏农业学报,2020,36(2):277-283.
[14]HU Y J, DENG L Q, CHEN J W, et al. An analytical pipeline to compare and characterise the anthocyanin antioxidant activities of purple sweet potato cultivars[J]. Food Chemistry, 2016, 194: 46-54.
[15]吴洁,沈学善,屈会娟,等.紫肉食用型甘薯品种川紫薯2号优化栽培技术[J].江苏农业科学,2020,48(16):120-125.
[16]王辉,牟琴,聂廷,等.基于相关性与主成分分析法综合评价不同品种甘薯脆片加工适宜性[J].江苏农业科学,2020,48(6):173-179.
[17]GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7): 644-652.
[18]韦丽君,俞奔驰,宋恩亮,等. 基于转录组测序的木薯性别决定相关基因挖掘[J].南方农业学报,2020,51(8):1785-1796.
[19]鞠烨,江建平,尹增芳,等. 孝顺竹笋箨全长转录组测序分析[J]. 南京林业大学学报(自然科学版), 2020,44(6):175-183.
[20]WU Z G, JIANG W, MANTRI N, et al. Transciptome analysis reveals flavonoid biosynthesis regulation and simple sequence repeats in yam (Dioscorea alata L.) tubers[J]. BMC Genomics, 2015, 16: 346.
[21]GONZLEZ M, SALAZAR E, CASTILLO J, et al. Genetic structure based on EST-SSR: a putative tool for fruit color selection in Japanese plum (Prunus salicina L.) breeding programs[J]. Molecular Breeding, 2016, 36(6): 68.
[22]SHANGGUAN L F, MU Q, FANG X, et al. RNA-Sequencing reveals biological networks during table grapevine (‘Fujiminori′) fruit development[J]. PLoS One, 2017, 12(1): e0170571.
[23]WANG Z Y, FANG B P, CHEN J Y, et al. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas) [J]. BMC Genomics, 2010, 11(1):726-740.
[24]XIE F L, BURKLEW C E, YANG Y F, et al. De novo sequencing and a comprehensive analysis of purple sweet potato (Ipomoea batatas L.) transcriptome[J]. Planta, 2012, 236(1): 101-113.
[25]LI R J, HONG Z, CHEN K, et al. De novo transcriptome sequencing of the orange-fleshed sweet potato and analysis of differentially expressed genes related to carotenoid biosynthesis[J]. International Journal of Genomics, 2015, 2015(13): 1-10.
[26]LIU Y H, LIN-WANG K, DENG C, et al. Comparative transcriptome analysis of white and purple potato to identify genes involved in anthocyanin biosynthesis[J]. PLoS One, 2015, 10: e0129148.
[27]YANG Y N, YAO G F, ZHENG D, et al. Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration[J]. Plant Cell Reports, 2015, 34:189-198.
[28]WEI H R, CHEN X, ZONG X J, et al. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunusavium L.) [J]. PLoS One, 2015, 10: e0121164.
[29]ZHOU W, GONG Y F, LU X, et al. Molecular cloning and characterization of a flavonoid 3′-hydroxylase gene from purple-fleshed sweet potato (Ipomoea batatas) [J]. Molecular Biology Reports, 2012, 39(1):295-302.
[30]ZHOU W, HUANG C T, GONG Y F, et al. Molecular cloning and expression analysis of an ANS gene encoding anthocyanidin synthase from purple-fleshed sweet potato [Ipomoea batatas (L.) Lam][J]. Plant Molecular Biology Reporter, 2010, 28(1): 112-121.
[31]GUO J Y, ZHOU W, LU Z L, et al. Isolation and functional analysis of chalcone isomerase gene from purple-fleshed sweet potato[J]. Plant Molecular Biology Reporter, 2015, 33(5):1451-1463.
[32]WANG H X, FAN W J, LI H, et al. Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses[J]. PLoS One, 2013, 8(11): e78484.
[33]SUN C, LI Y, WU Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis[J]. BMC Genomic, 2010, 11:262.
[34]FELLER A, MACHEMER K, BRAUN E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. The Plant Journal, 2011, 66:94-116.
[35]ZHAO L, GAO L P, WANG H X, et al. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis[J]. Functional and Integrative Genomics, 2013, 13:75-98.
[36]CHU H, JEONG J C, KIM W J, et al. Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis[J]. Physiologia Plantarum, 2013, 148: 189-199.
[37]AN C H, LEE K W, LEE S H, et al. Heterologous expression of IbMYB1a by different promoters exhibits different patterns of anthocyanin accumulation in tobacco[J]. Plant Physiology and Biochemistry, 2015, 89: 1-10.
[38]PARK S C, KIM Y H, KIM S H, et al. Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity[J]. Physiologia Plantarum, 2015, 153(4): 525-537.
[39]WU R M, WANG T C, MCGIE T, et al. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time[J]. Journal of Experimental Botany, 2014, 65:4985-4995.
[40]ZHOU H, LIN-WANG K, WANG H L, et al. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors[J]. The Plant Journal, 2015, 82:105-121.
[41]JIANG Y H, LIU C H, YAN D, et al. MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar ‘Granny Smith’[J]. Journal of Experimental Botany, 2017, 68:1055-1069.
[42]ZHANG J, XU H F, WANG N, et al. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple[J]. Plant Molecular Biology, 2018, 98:205-218.
[43]LIU C C, CHI C, JIN L J, et al. The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato[J]. Plant Cell and Environment, 2018, 41:1762-1775.
[44]HU B, ZHAO J T, LAI B, et al. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn[J]. Plant Cell Reports, 2016, 35(4): 831-843.
[45]LUO H F, DAI C, LI Y P, et al. Reduced anthocyanins in petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry[J]. Journal of Experimental Botany, 2018, 69:2595-2608.
[46]JIANG S H, CHEN M, HE N B, et al. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple[J]. Horticulture Research, 2019, 6:40.
[47]LIU Y F, QI Y W, ZHANG A L, et al. Molecular cloning and functional characterization of AcGST1, an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis) [J]. Plant Molecular Biology, 2019, 100:451-465.
[48]ZHAO Y, DONG W Q, ZHU Y C, et al. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach[J]. Plant Biotechnology Journal, 2020, 18:1-12.
[49]CONN S, CURTIN C, BZIER A, et al. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins[J]. Journal of Experimental Botany, 2008, 59(13): 3621-3634.
[50]PREZ-DAZ R, MADRID-ESPINOZA J, SALINAS-CORNEJO J, et al. Differential roles for VviGST1, VviGST3, and VviGST4 in proanthocyanidin and anthocyanin transport in Vitis vinifera[J]. Frontiers in Plant Science, 2016, 7:1166.
[51]FRANCISCO R M, REGALADO A, AGEORGES A, et al. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-glucosides[J]. The Plant Cell, 2013, 25(5): 1840-1854.
[52]GOMEZ C, TERRIER N, TORREGROSA L, et al. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters[J]. Plant Physiology, 2009, 150(1): 402-415.
[53]吴远双,宋毅豪,吴宝尧,等. 植物多药和有毒化合物排出转运蛋白研究进展[J]. 广西植物, 2018, 38(11):128-138.
[54]KOU MENG, LIU Y J, LI Z Y, et al. A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration[J]. Plant Physiology and Biochemistry, 2019, 135: 395-403.

相似文献/References:

[1]冯娇,王武,侯旭东,等.基于转录组测序技术探究GA3和CPPU抑制葡萄果锈产生的机理[J].江苏农业学报,2017,(04):895.[doi:doi:10.3969/j.issn.1000-4440.2017.04.026]
 FENG Jiao,WANG Wu,HOU Xu-dong,et al.Underlying mechanism of GA3 and CPPU inhibiting grape fruit russet discovered based on transcriptome sequencing[J].,2017,(02):895.[doi:doi:10.3969/j.issn.1000-4440.2017.04.026]
[2]李隐侠,冯小品,张莉,等.热应激前后湖羊下丘脑差异表达新基因的筛选与注释[J].江苏农业学报,2019,(02):363.[doi:doi:10.3969/j.issn.1000-4440.2019.02.017]
 LI Yin-xia,FENG Xiao-pin,ZHANG Li,et al.Screening and annotation of novel genes differentially expressed in hypothalamus before and after heat stress in Hu sheep[J].,2019,(02):363.[doi:doi:10.3969/j.issn.1000-4440.2019.02.017]
[3]王亚丽,陈煜东,王益军.高世代回交玉米矮秆种质的转录组分析[J].江苏农业学报,2021,(02):280.[doi:doi:10.3969/j.issn.1000-4440.2021.02.002]
 WANG Ya-li,CHEN Yu-dong,WANG Yi-jun.Transcriptome analysis on the advanced backcross population of maize dwarf germplasm[J].,2021,(02):280.[doi:doi:10.3969/j.issn.1000-4440.2021.02.002]
[4]徐鹿,罗光华,金瑜剑,等.转录组测序分析毒死蜱与醚菊酯混配对二化螟毒杀的增效机制[J].江苏农业学报,2021,(02):317.[doi:doi:10.3969/j.issn.1000-4440.2021.02.006]
 XU Lu,LUO Guang-hua,JIN Yu-jian,et al.Study on the synergistic mechanism of chlorpyrifos and ethofenprox mixture in poisoning Chilo suppressalis based on transcriptome sequencing[J].,2021,(02):317.[doi:doi:10.3969/j.issn.1000-4440.2021.02.006]
[5]殷剑美,张铅,蒋璐,等.山药块茎发育阶段基因共表达网络构建及阶段特异性分析[J].江苏农业学报,2022,38(01):30.[doi:doi:10.3969/j.issn.1000-4440.2022.01.004]
 YIN Jian-mei,ZHANG Qian,JIANG Lu,et al.Stage-specific and weighted gene co-expression network analyses of yam (Dioscorea alata L.) tuber growth[J].,2022,38(02):30.[doi:doi:10.3969/j.issn.1000-4440.2022.01.004]
[6]段修军,孙国波,张蕾,等.基于RNA-Seq鉴定黑羽番鸭肉质风味差异的候选基因[J].江苏农业学报,2022,38(03):739.[doi:doi:10.3969/j.issn.1000-4440.2022.03.020]
 DUAN Xiu-jun,SUN Guo-bo,ZHANG Lei,et al.Identification of candidate genes related to meat flavor in black Muscovy duck based on RNA-Seq[J].,2022,38(02):739.[doi:doi:10.3969/j.issn.1000-4440.2022.03.020]
[7]陈亚辉,张师瑒,杨庆山,等.多枝柽柳叶片响应NaCl胁迫的转录组分析[J].江苏农业学报,2022,38(05):1188.[doi:doi:10.3969/j.issn.1000-4440.2022.05.005]
 CHEN Ya-hui,ZHANG Shi-yang,YANG Qing-shan,et al.Transcriptome analysis of Tamarix ramosissima leaves in response to NaCl stress[J].,2022,38(02):1188.[doi:doi:10.3969/j.issn.1000-4440.2022.05.005]
[8]朱淑斌,徐盼,周春宝,等.基于RNA-Seq技术筛选姜曲海猪子宫和卵巢发育相关基因[J].江苏农业学报,2024,(01):130.[doi:doi:10.3969/j.issn.1000-4440.2024.01.014]
 ZHU Shu-bin,XU Pan,ZHOU Chun-bao,et al.Screening of functional genes associated with uterus and ovary development in Jiangquhai pig based on RNA-Seq technology[J].,2024,(02):130.[doi:doi:10.3969/j.issn.1000-4440.2024.01.014]

备注/Memo

备注/Memo:
收稿日期:2021-08-03基金项目:国家重点研发计划项目(2019YFD1001300、2019YFD1001304);国家现代农业产业技术体系项目(CARS-10) 作者简介:后猛(1981-),男,山东曹县人,博士,副研究员,主要从事甘薯遗传育种研究。(E-mail)koumeng2113@163.com通讯作者:李强,(E-mail)instrong@ 163.com
更新日期/Last Update: 2022-05-07