[1]张付杰,辛立东,李丽霞,等.三七主根微波真空-热风分段式干燥特性及品质分析[J].江苏农业学报,2022,38(01):214-222.[doi:doi:10.3969/j.issn.1000-4440.2022.01.026]
 ZHANG Fu-jie,XIN Li-dong,LI Li-xia,et al.Characteristics and quality analysis of main roots of Panax notoginseng (Burk.) F. H. Chen by microwave vacuum-hot air segmented drying[J].,2022,38(01):214-222.[doi:doi:10.3969/j.issn.1000-4440.2022.01.026]
点击复制

三七主根微波真空-热风分段式干燥特性及品质分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年01期
页码:
214-222
栏目:
加工贮藏·质量安全
出版日期:
2022-02-28

文章信息/Info

Title:
Characteristics and quality analysis of main roots of Panax notoginseng (Burk.) F. H. Chen by microwave vacuum-hot air segmented drying
作者:
张付杰12辛立东1李丽霞12周杰1李子建1林宇浩1
(1.昆明理工大学农业与食品学院,云南昆明650500;2.云南省高校中药材机械化工程研究中心,云南昆明650500)
Author(s):
ZHANG Fu-jie12XIN Li-dong1LI Li-xia12ZHOU Jie1LI Zi-jian1LIN Yu-hao1
(1.Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China;2.Mechanization Engineering Research Center of Chinese Medicinal Materials of Yunnan Provincial Colleges and Universities, Kunming 650500, China)
关键词:
三七干燥特性模型分段式干燥微波真空-热风品质
Keywords:
Panax notoginsengdrying characteristicsmodelsegmented dryingmicrowave vacuum-hot airquality
分类号:
S567.23+6
DOI:
doi:10.3969/j.issn.1000-4440.2022.01.026
文献标志码:
A
摘要:
为研究三七主根微波真空-热风分段式干燥特性及品质,探讨不同功率密度(0.50 W/g、0.75 W/g、1.00 W/g、1.50 W/g)、腔室压力(1 kPa、3 kPa、5 kPa、10 kPa)和温度上限(45 ℃、50 ℃、55 ℃)对三七主根干燥特性及有效水分扩散系数的影响,建立分段式干燥拟合模型,并对比分析三七品质的变化。结果表明,三七主根微波真空-热风分段式干燥主要分为减速阶段和恒速阶段,恒速阶段发生在干基含水率从1.0 g/g降至0.5 g/g阶段。三七主根干燥过程中微波真空阶段的有效水分扩散系数(Deff)为7.84×10-10~1.80×10-9m2/s,并且随着温度上限、功率密度的增大及腔室压力的降低而增大,热风干燥阶段的Deff为1.45×10-10~6.82×10-10m2/s。对干燥过程进行分段拟合,发现Weibull模型能更好地预测三七主根微波真空-热风分段式干燥规律。与热风对照组相比,微波真空-热风分段式干燥可缩短干燥时间44.6%~60.0%,其三七干制品总皂苷含量最高为10.2%,其应用具有较好的可行性及优势。
Abstract:
To investigate the characteristics and quality of microwave vacuum-hot air segmented drying of Panax notoginseng main roots, effects of different power densities (0.50 W/g, 0.75 W/g, 1.00 W/g and 1.50 W/g), chamber pressures (1 kPa, 3 kPa, 5 kPa and 10 kPa) and upper temperature limits (45 ℃, 50 ℃ and 55 ℃) on the drying characteristics and effective moisture diffusion coefficient of P. notoginseng roots were discussed. Segmented drying fitting models were established, and the changes of P. notoginseng qualities were compared and analyzed. The results suggested that the microwave vacuum-hot air segmented drying of P. notoginseng main roots was mainly in the stages of falling rate and constant rate. The constant rate stage occurred when the moisture content of the dry basis dropped from 1.0 g/g to 0.5 g/g. During the microwave vacuum stage of drying process, the effective moisture diffusivity coefficient (Deff) was between 7.84×10-10m2/s and 1.80×10-9m2/s, which added with the increase of temperature upper limit, power density and the decrease of chamber pressure. The Deff of the hot air drying stage was between 1.45×10-10m2/s and 6.82×10-10m2/s. Through segmental fitting of the drying process, it was found that the Weibull model could better predict the law of microwave vacuum-hot air sectional drying of P. notoginseng main roots. Compared with the hot air control group, it could be seen that microwave vacuum-hot air drying had shortened the drying time by 44.6% to 60.0%, and the saponins content of P. notoginseng dry products reached 10.2%, which had better feasibility and advantages.

参考文献/References:

[1]维恒农业. 2020年中国三七产业数据分析报告[R/OL].(2020-09-28)
[2020-12-06].https://www.weihengag.com/home/data/productdetail/id/122/doc_id/7347.html.
[2]张崇喜. 人参、西洋参和三七化学成分的研究[D].长春:吉林农业大学,2004:53-108.
[3]WANG T, GUO R, ZHOU G, et al. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review[J]. Journal of Ethnopharmacology, 2016, 188(1): 234-258.
[4]陈林伟,秦昆明,朱艳汇,等. 中药材产地加工的研究现状及展望[J].中国中药杂志,2015,40(4):602-606.
[5]周国燕,詹 博,桑迎迎,等. 不同干燥方法对三七内部结构和复水品质的影响[J].食品科学,2011,32(20):44-47.
[6]POPOVICH D G, HU C, DURANCE T D, et al. Retention of ginsenosides in dried ginseng root: comparison of drying methods [J]. Journal of Food Science, 2005, 70(4):355-358.
[7]李武强. 当归切片微波真空干燥特性及传热传质机理研究[D].兰州:甘肃农业大学,2020.
[8]张付杰,辛立东,代建武,等. 猕猴桃片旋转托盘式微波真空干燥特性分析[J].农业机械学报,2020,51(增刊1):501-508.
[9]MONTEIRO R L, LINK J V, TRIBUZI G, et al. Microwave vacuum drying and multi-flash drying of pumpkin slices [J]. Journal of Food Engineering, 2018, 232:1-10.
[10]WANG M X, LIU B, WANG C, et.al. Heat and mass transfer analysis of apple slice during microwave drying [J].Food Research and Development,2017,38(21):10-14,51.
[11]安可婧,徐玉娟,魏来,等. 龙眼间歇真空微波干燥动力学研究[J].食品与机械,2018,34(9):30-36.
[12]高明菊,冯光泉,曾鸿超,等. 微波干燥对三七皂苷有效成分的影响[J].中药材,2010,33(2):198-200.
[13]杨海峰. 改进三七加工技术的研究[D].长春:吉林农业大学,2011.
[14]SUNDARAM G. Pulsed microwave-vacuum drying of food materials[J].Drying Technology, 1999, 17 (3):395-412.
[15]刘小丹,徐怀德,孙田奎,等. 红枣微波-热风联合干燥工艺优化[J].食品科学,2013,34(10):98-102.
[16]衡银雪,郑旭煦,殷钟意,等. 黄精微波真空-热风联合干燥工艺研究[J].应用化工,2018,47(5):952-955.
[17]李湘利,刘静,侯一超,等. 大蒜粒微波-热风联合干燥的工艺优化[J].食品与发酵工业,2018,44(11):237-244.
[18]郭徽,杨薇,刘英. 云南三七主根干燥特性及其功效指标评价[J].农业工程学报,2014,30(17):305-313.
[19]刘勇,徐娜,陈骏飞,等. 不同干燥方法对三七药材外观性状与内在结构及其品质的影响[J].中草药,2019,50(23):5714-5723.
[20]国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定:GB/T 5009.3-2016 [S].北京:中国人口出版社,2016.
[21]国家药典委员会. 中国药典[M].北京:中国医药科技出版社,2015:28-29.
[22]李绚阳,李保明,郑炜超,等. 鸡粪中低温干燥动力学特性与参数优化[J].农业工程学报,2018,34(10):194-199.
[23]王汉羊,刘丹,于海明. 山药微波热风耦合干燥特性及动力学模型[J].食品科学,2018,39(15):115-121.
[24]TAHERI-GARAVAND A, MEDA V. Drying kinetics and modeling of savory leaves under different drying conditions [J]. International Food Research Journal, 2018, 25(4): 1357-1364.
[25]吴小华,马渊博,宁旭丹,等. 西洋参分段式热风干燥动力学模型构建[J].农业工程学报,2020,36(5):318-324.
[26]尹晓峰,杨明金,李光林,等. 稻谷薄层热风干燥工艺优化及数学模型拟合[J].食品科学,2017,38(8):198-205.
[27]代建武,杨升霖,王杰,等. 微波真空干燥对香蕉片干燥特性及品质的影响[J].农业机械学报,2020,51(S1):493-500.
[28]DARVISHI H. Quality, performance analysis, mass transfer parameters and modeling of drying kinetics of soybean [J]. Brazilian Journal of Chemical Engineering, 2017, 34(1): 143-158.
[29]顾思忠,刘斌,杨兆丹. 胡萝卜在微波干燥条件下的热物理性质和多孔特性[J].江苏农业学报,2018,34(4):897-903.
[30]于海明,李海源,张欣悦,等. 水稻秸秆营养穴盘微波热风耦合干燥动力学模型研究[J].农业机械学报,2020,51(5):339-348.

备注/Memo

备注/Memo:
收稿日期:2021-04-13基金项目:云南省重大科技专项计划项目(2018ZF004);昆明理工大学分析测试基金资助项目(2019T20030031)作者简介:张付杰(1977-),男,山东青岛人,博士,副教授,主要从事农产品加工技术与装备研究。(E-mail)66605115@qq.com通讯作者:李丽霞,(E-mail)lilixia2012@kust.edu.cn
更新日期/Last Update: 2022-03-04