[1]谢晴,饶旭东,周聪,等.夜间增温条件下施硅稻田N2O还原对外源氮的响应[J].江苏农业学报,2022,38(01):87-93.[doi:doi:10.3969/j.issn.1000-4440.2022.01.010]
 XIE Qing,RAO Xu-dong,ZHOU Cong,et al.Response of N2O reduction to exogenous nitrogen in paddy field under night warming and silicon application[J].,2022,38(01):87-93.[doi:doi:10.3969/j.issn.1000-4440.2022.01.010]
点击复制

夜间增温条件下施硅稻田N2O还原对外源氮的响应()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年01期
页码:
87-93
栏目:
耕作栽培·资源环境
出版日期:
2022-02-28

文章信息/Info

Title:
Response of N2O reduction to exogenous nitrogen in paddy field under night warming and silicon application
作者:
谢晴饶旭东周聪薛梦琪张耀鸿
(南京信息工程大学气象灾害预报预警与评估协同创新中心/江苏省农业气象重点实验室,江苏南京210044)
Author(s):
XIE QingRAO Xu-dongZHOU CongXUE Meng-qiZHANG Yao-hong
(Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology/Jiangsu Provincial Key Laboratory of Agricultural Meteorology, Nanjing 210044, China)
关键词:
N2O还原夜间增温硅肥
Keywords:
N2O reductionnighttime warmingsilicon fertilizer
分类号:
S181
DOI:
doi:10.3969/j.issn.1000-4440.2022.01.010
文献标志码:
A
摘要:
选用田间开放式长期进行的夜间增温稻田(NW)、夜间常温+施加硅肥稻田(Si)、夜间增温+施硅稻田(NW+Si)以及夜间常温稻田(CK),分别采集耕层根际土和非根际土,设置4个氮添加处理,即NH+4-N、NO-3-N、酰胺态氮(尿素)和无氮,研究不同稻田土壤N2O还原潜力对外源氮的响应特征。结果表明,4种稻田的根际土和非根际土在厌氧培养过程中N2O浓度均随时间增长而下降,且变化趋势一致。在无氮添加条件下,NW处理稻田和Si处理稻田根际土的N2O还原速率分别为19.2 μg/(g·d)和16.6 μg/(g·d),显著高于CK稻田(P<0.05),而对于非根际土而言三者之间无明显差异(P>0.05)。在添加NH+4-N或尿素条件下,Si处理稻田根际土的N2O还原速率显著高于CK稻田(P<0.05),而对于非根际土则无明显差异(P>0.05)。在添加NO-3 -N条件下,Si处理稻田非根际土的N2O还原速率显著高于CK稻田(P<0.05)。综合来看,在施加氮肥条件下,特别在施加尿素条件下NW+Si处理稻田的N2O还原速率显著高于NW处理稻田。因此,在未来气候变暖情景下,氮肥特别是尿素与硅肥配施可能是提高稻田土壤N2O还原潜力的一条有效途径。
Abstract:
In this study, four types of paddy soils in long-term open field experiment, including night warming treatment (NW), normal temperature+silicon fertilizer treatment (Si), night warming + silicon fertilizer treatment (NW+Si) and normal temperature + no silicon fertilizer treatment (CK), were used to collect rhizosphere soil and non-rhizosphere soil. Four nitrogen addition treatments, namely NH+4-N, NO-3-N, amide nitrogen (urea) and no nitrogen, were set up to study the response characteristics of N2O reduction potential in the four paddy soils to exogenous nitrogen addition. The results showed that the concentration of N2O decreased with the increase of incubation time, and the change trends were consistent. Under the condition of no nitrogen addition, N2O reduction rates of the rhizosphere soil in NW and Si paddy fields were 19.2 μg/(g·d) and 16.6 μg/(g·d), respectively, which were significantly higher than those in CK paddy field, whereas there was no significant difference in N2O reduction rate of non-rhizosphere soil among the three paddy fields. Under the condition of NH+4-N or urea addition, the N2O reduction rate of rhizosphere soil in Si paddy field was significantly higher than that in CK paddy field, but there was no significant difference for non-rhizosphere. Under the condition of NO-3-N addition, The N2O reduction rate of non-rhizosphere soil in Si paddy field was significantly higher than that in CK paddy field. Comprehensively, N2O reduction rate of NW + Si paddy field was significantly higher than that of NW paddy field under nitrogen application, especially under urea application. Therefore, in the future climate warming scenario, the combined application of nitrogen (especially urea) and silicon fertilizer may be an effective way to improve N2O reduction potential in paddy soil.

参考文献/References:

[1]IPCC. Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sect oral aspects. Contribution of working group Ⅱ to the fifth assessment report of the intergovernmental panel on climate change [R]. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2014: 1-32.
[2]IPCC. Climate change 2013: The physical science basis: Contribution of working group I to the fifth assessment report of the intergovernmental Panelon climate change [R]. Cambridge, UK, New York, NY, USA: Cambridge University Press, 2013.
[3]GAO B, JU X T, ZHANG Q, et al. New estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factors [J]. Biogeosciences Discussions, 2011, 8(11):3011-3024.
[4]ALEXANDER L V, ZHANG X B, PETERSON T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research Atmospheres, 2006, 111(D5): 1042.
[5]SILLMANN J , KHARIN V V , ZHANG X B . Climate extremes indices in the CMIP5 multi-model ensemble: Part 1 [J]. Journal of Geophysical Research Atmospheres, 2013, 118:1-18.
[6]WANG Y Y, HU Z H, SHANG D Y, et al. Effects of warming and elevated O3 concentrations on N2O emission and soil nitrification and denitrification rates in a wheat-soybean rotation cropland [J]. Environmental Pollution, 2019,255: 113556.
[7]CUI Q, SONG C C,WANG X W, et al. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China[J]. Science of the Total Environment, 2018(616/617): 427-434.
[8]刘燕,娄运生,杨蕙琳,等.施硅对增温稻田CH4和N2O排放的影响[J].生态学报,2020,40(18):6621-6631.
[9]郑泽华,娄运生,左慧婷,等. 施硅对夜间增温条件下水稻生长和产量的影响 [J]. 中国农业气象, 2018, 39(6): 390-397.
[10]SONG A L, FAN F L, YIN C, et al. The effects of silicon fertilizer on denitrification potential and associated genes abundance in paddy soil[J]. Biology and Fertility of Soils, 2017,53: 627-638.
[11]WODARCZYK T, BALAKHNINA T, MATICHENKOV V, et al. Effect of silicon on barley growth and N2O emission under flooding [J]. Science of The Total Environment, 2019,685: 1-9.
[12]焦燕,黄耀. 影响农田氧化亚氮排放过程的土壤因素 [J]. 气候与环境研究, 2003(4): 457-466.
[13]DONOSO L, SANTANA R, SANHUEZA E. Seasonal variation of N2O fluxes at a tropical savannah site: Soil consumption of N2O during the dry season [J]. Geophysical Research Letters, 1993, 20: 1379-1382.
[14]VERAART A J, KLEIN J, SCHEFFER M. Warming can boost denitrification disproportionately due to altered oxygen dynamics[J]. PLoS One, 2011,6: e18508.
[15]韩雪,陈宝明. 增温对土壤N2O和CH4排放的影响与微生物机制研究进展 [J]. 应用生态学报, 2020, 31(11): 3906-3914.
[16]胡正华,周迎平,崔海羚,等. 昼夜增温对大豆田土壤N2O排放的影响 [J]. 环境科学, 2013, 34(8): 2961-2967.
[17]王颖. 夜间增温对稻-麦农田CH4和N2O排放影响及其高光谱估算 [D]. 南京:南京信息工程大学, 2018.
[18]TAN E H, ZOU W B, ZHENG Z Z, et al. Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation [J].Nature Climate Change,2020(10): 349-355.
[19]HALLIN S, JONES C M, SCHLOTER M, et al. Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment [J]. ISME Journal, 2009(3): 597-605.
[20]PETERSEN D G, BLAZEWICZ S J, FIRESTONE M, et al. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska [J]. Environmental Microbiology, 2012, 14(4):993-1008.
[21]张军,刘忠红,周冬冬,等. 新型肥料在机插优质粳稻上的应用效果[J].江苏农业科学,2021,49(6):77-81.
[22]WANG W, SARDANS J, LAI D Y F, et al. Effects of steel slag application on greenhouse gas emissions and crop yield over multiple growing seasons in a subtropical paddy field in China[J]. Field Crops Research, 2015, 171:146-156.
[23]RICHARDSON D, FELGATE H, WATMOUGH N, et al. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle-could enzymic regulation hold the key? [J]. Trends in Biotechnology, 2009, 27: 388-397.
[24]林德华. 施加铁炉渣对稻田氧化亚氮通量的影响 [D]. 福州:福建师范大学,2012.
[25]娄金华,陈猛猛,张士荣,等. 磷硅肥配施对盐渍土壤水稻生长及养分吸收的影响[J]. 水土保持学报, 2020,34(4): 263-269.
[26]刘燕. 夜间增温下施硅对稻麦生长、品质及土壤CH4和N2O排放的影响 [D]. 南京:南京信息工程大学, 2020.
[27]TOBERMAN H, CHEN C R, XU Z H. Rhizosphere effects on soil nutrient dynamics and microbial activity in an Australian tropical lowland rainforest [J]. Soil Research, 2011, 49(7): 652-660.
[28]ZHU X, SILVA L C, DOANE T A, et al. Iron: The forgotten driver of nitrous oxide production in agricultural soil [J]. PLoS One, 2013, 8(3): E60146.

相似文献/References:

[1]张鑫磊,杨镇,李旸,等.夜间增温条件下免耕对土壤碳矿化的影响[J].江苏农业学报,2018,(03):540.[doi:doi:10.3969/j.issn.1000-4440.2018.03.009]
 ZHANG Xin-lei,YANG Zhen,LI Yang,et al.Effects of no-tillage on soil carbon mineralization under nighttime warming[J].,2018,(01):540.[doi:doi:10.3969/j.issn.1000-4440.2018.03.009]
[2]李君,娄运生,马莉,等.夜间增温和水分管理耦合对水稻叶片光合作用和荧光特性的影响[J].江苏农业学报,2019,(03):506.[doi:doi:10.3969/j.issn.1000-4440.2019.03.002]
 LI Jun,LOU Yun-sheng,MA Li,et al.Effect of nighttime warming and water managements coupling on photosynthetic and fluorescence characteristics in rice[J].,2019,(01):506.[doi:doi:10.3969/j.issn.1000-4440.2019.03.002]

备注/Memo

备注/Memo:
收稿日期:2021-05-11基金项目:国家自然科学基金项目(41671247、41103039); 江苏省自然科学基金项目( BK20171455); 国家留学基金项目(201908320185)作者简介:谢晴(1997-),女,湖南长沙人,硕士研究生,主要从事土壤温室气体排放研究。(E-mail)448399165@qq.com通讯作者:张耀鸿,(E-mail)yhzhang@nuist.edu.cn
更新日期/Last Update: 2022-03-04