[1]孙希云,刘春菊,任晗慈,等.冷冻干燥联合膨化干燥工艺优化提高银杏脆粒酥脆质地[J].江苏农业学报,2021,(06):1565-1574.[doi:doi:10.3969/j.issn.1000-4440.2021.05.026]
 SUN Xi-yun,LIU Chun-ju,REN Han-ci,et al.Optimization of freeze drying combined with puffing drying process to improve crispy texture of ginkgo crisp granule[J].,2021,(06):1565-1574.[doi:doi:10.3969/j.issn.1000-4440.2021.05.026]
点击复制

冷冻干燥联合膨化干燥工艺优化提高银杏脆粒酥脆质地()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年06期
页码:
1565-1574
栏目:
加工贮藏·质量安全
出版日期:
2021-12-30

文章信息/Info

Title:
Optimization of freeze drying combined with puffing drying process to improve crispy texture of ginkgo crisp granule
作者:
孙希云1刘春菊2任晗慈1郭嘉2戴竹青2牛丽影2吴海虹2李大婧2宋江峰2范文杰3
(1.沈阳农业大学食品学院,辽宁沈阳110161;2.江苏省农业科学院农产品加工研究所,江苏南京210014;3.徐州银杏源生物工程有限公司,江苏邳州221331)
Author(s):
SUN Xi-yun1LIU Chun-ju2REN Han-ci1GUO Jia2DAI Zhu-qing2NIU Li-ying2WU Hai-hong2LI Da-jing2SONG Jiang-feng2FAN Wen-jie3
(1.College of Food, Shengyang Agricultural University, Shenyang 110161, China;2.Institute of Argo-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;3.Xuzhou Ginkgo Biological Engineering Co., Ltd., Pizhou 221331, China)
关键词:
银杏冷冻干燥联合膨化干燥酥脆质地微观孔隙结构力学特性
Keywords:
ginkgofreeze drying combined with puffing dryingcrispy texturemicroscopic pore structuremechanical properties
分类号:
TS255.3
DOI:
doi:10.3969/j.issn.1000-4440.2021.05.026
文献标志码:
A
摘要:
为了研究冷冻干燥联合膨化干燥工艺提高银杏脆粒酥脆质地及微观孔隙结构、力学特性对质地形成的影响,采用单因素和响应面试验分析了冷冻-气流干燥、气流-冷冻干燥、冷冻-微波干燥、微波-冷冻干燥4种冷冻干燥联合膨化干燥对银杏脆粒质地的影响及优化冷冻-气流干燥工艺,并研究了冷冻-气流干燥过程中银杏微观结构、孔隙结构及力学特性的变化规律。结果表明:冷冻-气流干燥促使银杏脆粒获得更高的质构特性值,响应面优化获得最佳的干燥工艺为转换点水分 35%,膨化温度 98 ℃,膨化压力0.2 MPa,获得的质构特性值为2.25;与蒸煮银杏样品相比,冷冻干燥促使银杏组织形成均匀孔隙结构,孔隙率增加,弹性模量和黏性指数无显著变化(P>0.05),冷冻干燥的银杏样品表现出组织绵软,结构强度不足;进一步的气流膨化干燥瞬间膨化力冲击促使银杏组织出现较大的空洞及水分迁移通道,细胞组织破坏严重,孔隙率继续增加,弹性模量下降,黏性指数增加,这是由于冷冻干燥形成较好的多孔结构,有利于气流膨化干燥时内部水分更易对物料各个部位的膨化动力冲击,促使冷冻-气流干燥银杏脆粒酥脆质地的形成。
Abstract:
The paper was aimed to optimize freeze-drying combined with puffing drying process to improve crispy texture of ginkgo crisp granule and to study the effects of microscopic pore structure and mechanical properties on texture formation. The effects of four freeze-drying processes combined with puffing drying on texture characteristics of ginkgo were analyzed by using the single-factor and response surface experiments, and the changes of microstructure, pore structure and mechanical properties were observed during freezing-explosion puffing drying. The results showed that the freezing-explosion puffing drying promoted ginkgo crisp granule to obtain higher texture characteristics. The optimal drying conditions obtained by response surface optimization were as follows: the moisture content at the transition point was 35%, the puffing temperature was 98 ℃, the puffing pressure was 0.2 MPa. The texture characteristics were 2.25 under the optimized conditions. Compared with the steamed ginkgo sample, the pore structure of freeze-dried ginkgo sample was more uniform, porosity increased, elastic modulus and viscosity index had no significant difference (P>0.05), and the material tissue performed soft and low intensity. The instant puffing force from explosion puffing drying actuated the emergence of larger cavities and water migration channels, the severe damage of cell issue, increasing of porosity and viscosity index, and decreasing of elastic modulus. Forming the pore structure by freeze drying was conducive to puffing power generated by the internal moisture to impact various parts of the material, and to promote the formation of crispy texture of ginkgo crisp granule submitted to freezing-explosion puffing drying.

参考文献/References:

[1]余圆圆. 白果毒/效成分及白果对阿尔兹海默病的干预作用研究[D]. 镇江: 江苏大学, 2017.
[2]金敬红,徐志扬,陈文华. 超声波在银杏果干燥过程中的应用研究[J]. 中国野生植物资源, 2018, 37(2): 70-72.
[3]唐仕荣,巫永华,李超,等. 低银杏酸速溶银杏果粉的加工工艺研究[J]. 食品科技, 2018, 43(11): 116-122.
[4]SCHSSLER K, JGER H, KNORR D. Novel contact ultrasound system for the accelerated freeze-drying of vegetables[J]. Innovative Food Science and Emerging Technologies, 2012, 16:113-120.
[5]PEI F, SHI Y, GAO X Y, et al. Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying[J]. Food Chemistry, 2014, 165:547-554.
[6]BI J F, WANG X, CHEN Q Q, et al. Evaluation indicators of explosion puffing Fuji apple chips quality from different Chinese origins[J]. LWT-Food Science and Technology, 2015, 60(2):1129-1135.
[7]LYU J, ZHOU L Y, BI J F, et al. Quality evaluation of yellow peach chips prepared by explosion puffing drying[J]. J Food Science Technology, 2015, 52(12):8204-8211.
[8]王萍,易建勇,毕金峰,等. 菠萝蜜真空冷冻-变温压差膨化联合干燥工艺优化[J]. 中国食品学报, 2016, 16(11):129-136.
[9]YI J Y, LYU J, BI J F, et al. Hot air drying and freeze drying pre-treatments coupled to explosion puffing drying in terms of quality attributes of mango, pitaya, and papaya fruit chips[J]. Journal of Food Processing and Preservation, 2017, 41(6): 1-10.
[10]廉苗苗,黄略略,段续. 猕猴桃在冻干-真空微波联合干燥过程中的品质变化与水分分布特征[J]. 食品与发酵工业, 2020, 46(15):162-168.
[11]HUANG L L , ZHANG M , WANG L P , et al. Influence of combination drying methods on composition, texture, aroma and microstructure of apple slices[J]. LWT-Food Science and Technology, 2012, 47(1):183-188.
[12]MU Y, LIU C, ZHENG X, et al. Effects of microwave vacuum puffing conditions on the texture characteristics and sensory properties of blackcurrant (Ribes nigrum L) snack[J]. International Agricultural Engineering Journal, 2010, 19(3):45-53.
[13]YAN Z, SOUSA-GALLAGHER M J, OLIVEIRA F A R. Shrinkage and porosity of banana, pineapple and mango slices during air-drying[J]. Journal of Food Engineering, 2008, 84(3):430-440.
[14]ZIELINSKA M, SADOWSKI P, BLAZCZAK W. Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.)[J]. LWT-Food Science and Technology, 2015, 62(1): 555-563.
[15]WANG H, LIU C, XUE Y, et al. Correlation of mechanical properties of peach slices with cell wall polysaccharides and cell morphology during hot air predrying [J]. Journal of Food Processing and Preservation, 2020, 44(2): 1-11.
[16]刘春菊,王海鸥,刘春泉,等. 预处理对气流膨化干燥黄桃丁品质的影响[J]. 食品工业科技, 2016, 37(3): 251-255.
[17]LIU C J, LIU J X, LI D J, et al. Cell wall components, cell morphology, and mechanical properties of peach slices submitted to drying[J]. Drying Technology, 2019, 38(13): 1776-1789.
[18]刘春泉,张钟元,李丽娟,等. 莲藕片真空微波联合气流膨化干燥工艺[J]. 核农学报, 2015, 4(4):751-751.
[19]张立彦,芮汉明,李作为. 蛋白质对淀粉物料微波膨化的影响[J]. 华南理工大学学报(自然科学版), 2002, 30(2):56-56.
[20]石启龙,赵亚,郑亚琴. 雪莲果热风-微波联合干燥工艺优化[J]. 食品科学, 2011, 32(12): 150-155.
[21]柳萌,郜海燕,房祥军,等.不同成熟度杨梅酚酸的超声-微波协同优化提取及其抗氧化性对比[J].食品科学, 2021, 42(3): 112-120.
[22]FENG L, XU Y Y, XIAO Y D, et al. Effects of pre-drying treatments combined with explosion puffing drying on the physicochemical properties, antioxidant activities and flavor characteristics of apples[J]. Food Chemistry, 2020, 338:1-9.
[23]ALI S, SINGH B, SHARMA S. Response surface analysis and extrusion process optimization of maize-mungbean based instant weaning food[J]. International Joural of Food Science and Technology, 2016, 51:2301-2312.
[24]王海鸥,扶庆权,陈守江,等. 不同真空冷冻干燥方法对杏鲍菇片干燥特性及品质的影响[J]. 江苏农业学报, 2018, 34(4):904-912.
[25]WEI Q Y, HUANG J P, ZHANG Z Y, et al. Effects of different combined drying methods on drying uniformity and quality of dried taro slices[J]. Drying Technology, 2019, 37(3):322-330.
[26]LYU J, YI J, BI J F, et al. Impacts of explosion puffing drying combined with hot-air and freeze drying on the quality of papaya chips[J]. International Journal of Food Engineering, 2017, 13(2):1-11.

相似文献/References:

[1]冯磊,石元豹,汪贵斌,等.银杏bHLH家族转录因子生物信息学及表达分析[J].江苏农业学报,2019,(02):400.[doi:doi:10.3969/j.issn.1000-4440.2019.02.022]
 FENG Lei,SHI Yuan-bao,WANG Gui-bin,et al.Bioinformatics and expression analysis of transcription factors of ginkgo bHLH family[J].,2019,(06):400.[doi:doi:10.3969/j.issn.1000-4440.2019.02.022]

备注/Memo

备注/Memo:
收稿日期:2021-03-15基金项目:江苏省苏北科技专项(XZ-SZ201926)作者简介:孙希云(1978-),女,博士,副教授,主要从事健康食品营养与创制。(E-mail)sun_xiyun@163.com通讯作者:刘春菊,(Tel)025-84391922;(E-mail)cjliu0306@163.com
更新日期/Last Update: 2022-01-07