[1]陈艺华,陈振杰.一种面向对象的人工草地遥感监测方法[J].江苏农业学报,2021,(06):1545-1553.[doi:doi:10.3969/j.issn.1000-4440.2021.05.024]
 CHEN Yi-hua,CHEN Zhen-jie.An object-oriented remote sensing monitoring method for artificial grassland[J].,2021,(06):1545-1553.[doi:doi:10.3969/j.issn.1000-4440.2021.05.024]
点击复制

一种面向对象的人工草地遥感监测方法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年06期
页码:
1545-1553
栏目:
园艺
出版日期:
2021-12-30

文章信息/Info

Title:
An object-oriented remote sensing monitoring method for artificial grassland
作者:
陈艺华12陈振杰12
(1.南京大学地理与海洋科学学院,江苏南京210023;2.江苏省地理信息技术重点实验室,江苏南京210023)
Author(s):
CHEN Yi-hua12CHEN Zhen-jie12
(1.School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China;2.Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China)
关键词:
人工草地遥感监测面向对象分类多尺度分割特征选择
Keywords:
artificial grasslandremote sensing monitoringobject-oriented classificationmulti-scale segmentationfeature selection
分类号:
TP75
DOI:
doi:10.3969/j.issn.1000-4440.2021.05.024
文献标志码:
A
摘要:
城市绿化带动人工草地草需求量增大和经济效益提升,部分种植主体会选择种植人工草地草替代传统粮食作物,种植人工草地草会严重损害耕地质量,快速有效地监测在耕地上种植人工草地草很有必要。本研究通过面向对象的方法,利用高分辨率遥感影像来获取江苏省常州市新北区西夏墅镇东南部人工草地信息,研究影像分割的最佳分割参数、最优特征选取和分类方法等问题。通过比较2013年和2017年的人工草地草种植范围,了解该地区人工草地草种植的变化情况。结果表明,(1)面向对象的高分遥感监测方法在提取人工草地信息时,能使提取的人工草地信息更加完整,获取的信息更加丰富;(2)最优分类特征选择对于面向对象遥感信息提取至关重要,验证了J-M距离对特征选择的有效性,该方法可以适用于不同影像,但所选的特征依赖于具体影像和待提取要素的特性;(3)试验区人工草地呈现团块状的集聚分布,主要分布在城镇周边,多沿道路分布。2013-2017年,人工草地草种植范围呈扩张趋势,增加的区域大部分来自耕地。
Abstract:
Urban afforestation promotes the demand and economic benefits of artificial grassland. Some farmer households will choose to plant artificial grassland instead of traditional food crops. In addition, planting artificial grassland will seriously damage the quality of cultivated land. So it is necessary to quickly and effectively monitor the area and intensity of artificial grassland planting on basic farmland. In this study, high-resolution remote sensing images were used to obtain artificial grassland information in the southeast area of Xixiashu town, Xinbei district, Changzhou city, Jiangsu province. By using the object-oriented approach, the problems of the best segmentation parameters, the best feature selection and the classification method of the image were studied. The planting range of artificial grassland in 2013 and 2017 was compared to understand the changes of artificial grassland planting in this area. The results showed that using the object-oriented high-resolution remote sensing monitoring method to extract the artificial grassland information could make the extracted artificial grassland infarmation more complete and obtain more abundant information. The selection of optimal classification features was significant for the extraction of object-oriented remote sensing information. The validity of J-M distance to feature selection was verified. The method could be applied to different images, but the selected features depended on specific images and characteristics of the elements to be extracted. The artificial grassland presented a cluster of lump-like distribution, mainly distributed around the town and along the road. From 2013 to 2017, the planting area of artificial grassland showed an expansion trend, and most of the increased areas came from cultivated land.

参考文献/References:

[1]陈东湘,周生路,吴绍华. 基于遥感评价城市扩张对耕地质量等级结构及产能的影响[J]. 农业工程学报, 2017, 33(13): 264-269,316.
[2]孔祥斌. 当前耕地保护面临的问题分析及对策研究[J]. 中国土地, 2020 (12): 4-7.
[3]孙福军,李华蕾,王秋兵. 当前辽宁省耕地保护工作面临的主要问题及对策分析[J]. 农业经济, 2013 (6): 87-89.
[4]王勇,陈印军,易小燕,等. 耕地流转中的“非粮化”问题与对策建议[J]. 中国农业资源与区划, 2011, 32(4): 13-16.
[5]孔祥斌. 耕地“非粮化”问题、成因及对策[J]. 中国土地, 2020 (11): 17-19.
[6]单华佳,李梦璐,孙彦,等. 近10年中国草坪业发展现状[J]. 草地学报, 2013, 21(2): 222-229.
[7]高雅,林慧龙. 草业经济在国民经济中的地位、现状及其发展建议[J]. 草业学报, 2015, 24(1): 141-157.
[8]余高镜,柯庆明,黄立洪,等. 论大面积种植草坪的利与弊[J]. 草业科学, 2005 (1): 82-85.
[9]ZILLMANN E, GONZALEZ A, HERRERO E J M, et al. Pan-European grassland mapping using seasonal statistics from multisensor image time series[J]. IEEE Journal of Selected Topics in Applied Earth Observations, 2014, 7(8): 3461-3472.
[10]张丽华,王春霞,包玉海,等. 基于数学形态学的遥感影像人工草地提取研究[J]. 应用基础与工程科学学报, 2016, 24(6): 1075-1086.
[11]杜凤兰,田庆久,夏学齐,等. 面向对象的地物分类法分析与评价[J]. 遥感技术与应用, 2004 (1): 20-23,77.
[12]LOBO A, CHIC O, CASTERAD A. Classification of Mediterranean crops with multisensor data: per-pixel versus per-object statistics and image segmentation[J]. International Journal of Remote Sensing, 1996, 17(12): 2385-2400.
[13]ZHAO F, WU X, WANG S. Object-oriented vegetation classification method based on UAV and satellite image fusion[J]. Procedia Computer Science, 2020, 174: 609-615.
[14]GOODIN D G, ANIBAS K L, Bezymennyi M. Mapping land cover and land use from object-based classification: an example from a complex agricultural landscape[J]. International Journal of Remote Sensing, 2015, 36(18): 4702-4723.
[15]PEA-BARRAGN J M, NGUGI M K, PLANT R E, et al. Object-based crop identification using multiple vegetation indices, textural features and crop phenology[J]. Remote Sensing of Environment, 2011, 115(6): 1301-1316.
[16]陈杰,陈铁桥,刘慧敏,等. 高分辨率遥感影像耕地分层提取方法[J]. 农业工程学报, 2015, 31(3): 190-198.
[17]覃能. 基于高分辨率遥感影像耕地地块提取方法研究[J]. 测绘标准化, 2019, 35(2): 29-32.
[18]孙家波,张晓艳,牛鲁燕,等. 基于高分辨率遥感影像的耕地信息快速提取方法研究[J]. 山东农业科学, 2018, 50(3): 132-136,141.
[19]BAATZ M, SCHPE A, STROBL J, et al. Multiresolution Segmentation-an optimization approach for high quality multi-scale image segmentation[J]. Angewandte Geographische Informationsverarbeitung, 2000, 12: 12-23.
[20]张宏民. 南京市典型区域城市绿地的多尺度分割优化[D].南京:南京大学, 2017.
[21]DRGU L, TIEDE D, LEVICK S R. ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010, 24(6): 859-871.
[22]HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man, Cybernetics, 1973(6): 610-621.
[23]NUSSBAUM S, NIEMEYER I, CANTY M. SEATH-a new tool for automated feature extraction in the context of object-based image analysis[C]. Salzburg: Austria, 2006.
[24]余晓敏,湛飞并,廖明生,等. 利用改进SEaTH算法的面向对象分类特征选择方法[J]. 武汉大学学报(信息科学版), 2012, 37(8): 921-924.
[25]朱述龙,朱宝山,王红卫. 遥感图像处理与应用[M]. 北京:科学出版社, 2006.
[26]CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.
[27]BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
[28]高珊,黄贤金,钟太洋,等. 农业市场化对农户种植效益的影响——基于沪苏皖农户调查的实证研究[J]. 地理研究, 2013, 32(6): 1103-1112.
[29]梁俊芬,周怀康. 广东水稻生产成本收益比较分析[J]. 中国稻米, 2017, 23(1): 60-64.
[30]刘彦随,乔陆印. 中国新型城镇化背景下耕地保护制度与政策创新[J]. 经济地理, 2014, 34(4): 1-6.

相似文献/References:

[1]李卫国,顾晓鹤,葛广秀,等.县域冬小麦病害遥感监测信息系统研制[J].江苏农业学报,2019,(02):302.[doi:doi:10.3969/j.issn.1000-4440.2019.02.009]
 LI Wei-guo,GU Xiao-he,GE Guang-xiu,et al.Development of remote sensing monitoring information system for county scale winter wheat diseases[J].,2019,(06):302.[doi:doi:10.3969/j.issn.1000-4440.2019.02.009]
[2]彭一平,刘振华,肖北生,等.基于高分遥感的县域耕地质量监测[J].江苏农业学报,2019,(04):841.[doi:doi:10.3969/j.issn.1000-4440.2019.04.013]
 PENG Yi ping,LIU Zhen hua,XIAO Bei sheng,et al.Research on county cultivated land quality monitoring based on high resolution remote sensing[J].,2019,(06):841.[doi:doi:10.3969/j.issn.1000-4440.2019.04.013]
[3]单捷,孙玲,王志明,等.GF-1影像遥感监测指标与冬小麦长势参数的关系[J].江苏农业学报,2019,(06):1323.[doi:doi:10.3969/j.issn.1000-4440.2019.06.008]
 SHAN Jie,SUN Ling,WANG Zhi-ming,et al.Relationship between remote sensing monitoring indices and growth parameters in winter wheat based on GF-1 images[J].,2019,(06):1323.[doi:doi:10.3969/j.issn.1000-4440.2019.06.008]

备注/Memo

备注/Memo:
收稿日期:2021-01-11基金项目:国家自然科学基金面上项目( 41571378、41671386)作者简介:陈艺华(1996-),女,江苏无锡人,硕士研究生,主要从事土地利用变化、遥感图像目标提取的研究。(E-mail)njucyh@163.com通讯作者:陈振杰,(E-mail)chenzj@nju.edu.cn
更新日期/Last Update: 2022-01-07