参考文献/References:
[1]陈东湘,周生路,吴绍华. 基于遥感评价城市扩张对耕地质量等级结构及产能的影响[J]. 农业工程学报, 2017, 33(13): 264-269,316.
[2]孔祥斌. 当前耕地保护面临的问题分析及对策研究[J]. 中国土地, 2020 (12): 4-7.
[3]孙福军,李华蕾,王秋兵. 当前辽宁省耕地保护工作面临的主要问题及对策分析[J]. 农业经济, 2013 (6): 87-89.
[4]王勇,陈印军,易小燕,等. 耕地流转中的“非粮化”问题与对策建议[J]. 中国农业资源与区划, 2011, 32(4): 13-16.
[5]孔祥斌. 耕地“非粮化”问题、成因及对策[J]. 中国土地, 2020 (11): 17-19.
[6]单华佳,李梦璐,孙彦,等. 近10年中国草坪业发展现状[J]. 草地学报, 2013, 21(2): 222-229.
[7]高雅,林慧龙. 草业经济在国民经济中的地位、现状及其发展建议[J]. 草业学报, 2015, 24(1): 141-157.
[8]余高镜,柯庆明,黄立洪,等. 论大面积种植草坪的利与弊[J]. 草业科学, 2005 (1): 82-85.
[9]ZILLMANN E, GONZALEZ A, HERRERO E J M, et al. Pan-European grassland mapping using seasonal statistics from multisensor image time series[J]. IEEE Journal of Selected Topics in Applied Earth Observations, 2014, 7(8): 3461-3472.
[10]张丽华,王春霞,包玉海,等. 基于数学形态学的遥感影像人工草地提取研究[J]. 应用基础与工程科学学报, 2016, 24(6): 1075-1086.
[11]杜凤兰,田庆久,夏学齐,等. 面向对象的地物分类法分析与评价[J]. 遥感技术与应用, 2004 (1): 20-23,77.
[12]LOBO A, CHIC O, CASTERAD A. Classification of Mediterranean crops with multisensor data: per-pixel versus per-object statistics and image segmentation[J]. International Journal of Remote Sensing, 1996, 17(12): 2385-2400.
[13]ZHAO F, WU X, WANG S. Object-oriented vegetation classification method based on UAV and satellite image fusion[J]. Procedia Computer Science, 2020, 174: 609-615.
[14]GOODIN D G, ANIBAS K L, Bezymennyi M. Mapping land cover and land use from object-based classification: an example from a complex agricultural landscape[J]. International Journal of Remote Sensing, 2015, 36(18): 4702-4723.
[15]PEA-BARRAGN J M, NGUGI M K, PLANT R E, et al. Object-based crop identification using multiple vegetation indices, textural features and crop phenology[J]. Remote Sensing of Environment, 2011, 115(6): 1301-1316.
[16]陈杰,陈铁桥,刘慧敏,等. 高分辨率遥感影像耕地分层提取方法[J]. 农业工程学报, 2015, 31(3): 190-198.
[17]覃能. 基于高分辨率遥感影像耕地地块提取方法研究[J]. 测绘标准化, 2019, 35(2): 29-32.
[18]孙家波,张晓艳,牛鲁燕,等. 基于高分辨率遥感影像的耕地信息快速提取方法研究[J]. 山东农业科学, 2018, 50(3): 132-136,141.
[19]BAATZ M, SCHPE A, STROBL J, et al. Multiresolution Segmentation-an optimization approach for high quality multi-scale image segmentation[J]. Angewandte Geographische Informationsverarbeitung, 2000, 12: 12-23.
[20]张宏民. 南京市典型区域城市绿地的多尺度分割优化[D].南京:南京大学, 2017.
[21]DRGU L, TIEDE D, LEVICK S R. ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010, 24(6): 859-871.
[22]HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man, Cybernetics, 1973(6): 610-621.
[23]NUSSBAUM S, NIEMEYER I, CANTY M. SEATH-a new tool for automated feature extraction in the context of object-based image analysis[C]. Salzburg: Austria, 2006.
[24]余晓敏,湛飞并,廖明生,等. 利用改进SEaTH算法的面向对象分类特征选择方法[J]. 武汉大学学报(信息科学版), 2012, 37(8): 921-924.
[25]朱述龙,朱宝山,王红卫. 遥感图像处理与应用[M]. 北京:科学出版社, 2006.
[26]CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.
[27]BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
[28]高珊,黄贤金,钟太洋,等. 农业市场化对农户种植效益的影响——基于沪苏皖农户调查的实证研究[J]. 地理研究, 2013, 32(6): 1103-1112.
[29]梁俊芬,周怀康. 广东水稻生产成本收益比较分析[J]. 中国稻米, 2017, 23(1): 60-64.
[30]刘彦随,乔陆印. 中国新型城镇化背景下耕地保护制度与政策创新[J]. 经济地理, 2014, 34(4): 1-6.
相似文献/References:
[1]李卫国,顾晓鹤,葛广秀,等.县域冬小麦病害遥感监测信息系统研制[J].江苏农业学报,2019,(02):302.[doi:doi:10.3969/j.issn.1000-4440.2019.02.009]
LI Wei-guo,GU Xiao-he,GE Guang-xiu,et al.Development of remote sensing monitoring information system for county scale winter wheat diseases[J].,2019,(06):302.[doi:doi:10.3969/j.issn.1000-4440.2019.02.009]
[2]彭一平,刘振华,肖北生,等.基于高分遥感的县域耕地质量监测[J].江苏农业学报,2019,(04):841.[doi:doi:10.3969/j.issn.1000-4440.2019.04.013]
PENG Yi ping,LIU Zhen hua,XIAO Bei sheng,et al.Research on county cultivated land quality monitoring based on high resolution remote sensing[J].,2019,(06):841.[doi:doi:10.3969/j.issn.1000-4440.2019.04.013]
[3]单捷,孙玲,王志明,等.GF-1影像遥感监测指标与冬小麦长势参数的关系[J].江苏农业学报,2019,(06):1323.[doi:doi:10.3969/j.issn.1000-4440.2019.06.008]
SHAN Jie,SUN Ling,WANG Zhi-ming,et al.Relationship between remote sensing monitoring indices and growth parameters in winter wheat based on GF-1 images[J].,2019,(06):1323.[doi:doi:10.3969/j.issn.1000-4440.2019.06.008]