参考文献/References:
[1]范永超,陈新军,汪金涛. 基于多因子栖息地指数模型的南太平洋长鳍金枪鱼渔场预报[J].海洋湖沼通报,2015(2):36-44.
[2]郭刚刚,张胜茂,樊伟,等. 基于表层及温跃层环境变量的南太平洋长鳍金枪鱼栖息地适应性指数模型比较[J].海洋学报,2016,38(10):44-51.
[3]王德芬,王玉堂,杨子江,等. 我国渔业多功能性的研究与思考[J].中国水产, 2012(1):15-17.
[4]苗振清,黄锡昌. 远洋金枪鱼渔业[M].上海:上海科学技术文献出版社,2003.
[5]BRIAND K, MOLONY B, LEHODEY P. A study on the variability of albacore (Thunnus alalunga) longline catch rates in the southwest Pacific Ocean[J]. Fisheries Oceanography, 2011, 20(6): 517-529.
[6]ZAINUDDIN M, SAITOH K, SAITOH S E I I. Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data[J]. Fisheries Oceanography, 2008, 17(2): 61-73.
[7]崔雪森,唐峰华,张衡,等. 基于朴素贝叶斯的西北太平洋柔鱼渔场预报模型的建立[J].中国海洋大学学报(自然科学版),2015,45(2):37-43.
[8]张孝民,石永闯,李凡,等. 基于MAXENT模型预测西北太平洋秋刀鱼潜在渔场[J].上海海洋大学学报,2020,29(2):280-286.
[9]宋利明,周建坤,沈智宾,等. 基于支持向量机的库克群岛海域长鳍金枪鱼栖息环境综合指数[J].海洋通报,2017,36(2):195-208.
[10]ZHOU P, LI P, ZHAO S, et al. Feature interaction for streaming feature selection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020,10:1-12.
[11]GUO H F, TANG R M, YE Y M, et al. DeepFM: a factorization-machine based neural network for CTR prediction[C]//SIERRA C. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne: International Joint Conferences on Artificial Intelligence, 2017: 1725-1731.
[12]CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]//KARATZOGLOU A, HIDASI B, TIKK D, et al. Proceedings of the 1st workshop on deep learning for recommender systems. New York: Association for Computing Machinery, 2016: 7-10.
[13]周为峰,黎安舟,纪世建, 等. 基于贝叶斯分类器的南海黄鳍金枪鱼渔场预报模型[J]. 海洋湖沼通报,2018(1):116-122.
[14]陈雪忠,樊伟,崔雪森,等. 基于随机森林的印度洋长鳍金枪鱼渔场预报[J].海洋学报(中文版),2013,35(1):158-164.
[15]RENDLE S. Factorization machines[C]//HINCHEY M, BERGMAN L A, WANG W P, et al. 2010 IEEE International Conference on Data Mining. Los Alamitos: IEEE Computer Society, 2010: 995-1000.
[16]WANG R, FU B, FU G, et al. Deep & cross network for ad click predictions[C]//ACM Special Interest Group on Knowledge Discovery in Data. Proceedings of the ADKDD′17. New York: Association for Computing Machinery, 2017: 1-7.
[17]LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[18]周飞燕,金林鹏,董军. 卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.
[19]邱锡鹏. 神经网络与深度学习[M]. 北京:机械工业出版社,2019:110-115.
[20]AYZEL G, HEISTERMANN M, SOROKIN A, et al. All convolutional neural networks for radar-based precipitation nowcasting[J]. Procedia Computer Science, 2019, 150: 186-192.
[21]崔雪森,唐峰华,周为峰,等. 基于支持向量机的西北太平洋柔鱼渔场预报模型构建[J].南方水产科学,2016,12(5):1-7.
[22]袁红春,陈冠奇,张天蛟,等. 基于全卷积网络的南太平洋长鳍金枪鱼渔场预报模型[J].江苏农业学报,2020,36(2):423-429.
相似文献/References:
[1]袁红春,陈冠奇,张天蛟,等.基于全卷积网络的南太平洋长鳍金枪鱼渔场预报模型[J].江苏农业学报,2020,(02):423.[doi:doi:10.3969/j.issn.1000-4440.2020.02.024]
YUAN Hong-chun,CHEN Guan-qi,ZHANG Tian-jiao,et al.Fishing ground forecast model of albacore tuna based on fully convolutional networks in the South Pacific[J].,2020,(06):423.[doi:doi:10.3969/j.issn.1000-4440.2020.02.024]
[2]袁红春,张硕,陈冠奇.基于双模态深度学习模型的渔场渔情预报[J].江苏农业学报,2021,(02):435.[doi:doi:10.3969/j.issn.1000-4440.2021.02.021]
YUAN Hong-chun,ZHANG Shuo,CHEN Guan-qi.Fishery forecasting in the fishing ground based on dual-modal deep learning model[J].,2021,(06):435.[doi:doi:10.3969/j.issn.1000-4440.2021.02.021]