参考文献/References:
[1]SUN W X, FAN J, FANG A F, et al. Ustilaginoidea virens: insights into an emerging rice pathogen[J]. Annual Review of Phytopathology, 2020, 58: 363-385.
[2]FAN J, YANG J, WANG Y Q, et al. Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease[J]. Molecular Plant Pathology, 2016, 17(9): 1321-1330.
[3]李小娟,刘二明,肖启明,等. 水稻对稻曲病抗性的分级及相应级别的产量损失[J]. 湖南农业大学学报(自然科学版),2011, 37(3):275-279.
[4]MENG J J, GU G, DANG P Q, et al. Sorbicillinoids from the fungus Ustilaginoidea virens and their phytotoxic, cytotoxic, and antimicrobial activities[J]. Frontiers in Chemistry, 2019, 7: 435.
[5]LI Y J, WANG M, LIU Z H, et al. Towards understanding the biosynthetic pathway for ustilaginoidin mycotoxins in Ustilaginoidea virens[J]. Environmental Microbiology, 2019, 21(8): 2629-2643.
[6]YU J J, YU M N, SONG T Q, et al. A homeobox transcription factor UvHOX2 regulates chlamydospore formation, conidiogenesis, and pathogenicity in Ustilaginoidea virens[J]. Frontiers in Microbiology, 2019, 10: 1071.
[7]CHEN X, HAI D, TANG J, et al. UvCom1 is an important regulator required for development and infection in the rice false smut fungus Ustilaginoidea virens[J]. Phytopathology, 2020, 110(2): 483-493.
[8]ZHENG D W, WANG Y, HAN Y, et al. UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens[J]. Scientific Reports, 2016, 6: 24824.
[9]MACPHERSON S, LAROCHELLE M, TURCOTTE B. A fungal family of transcriptional regulators: the zinc cluster proteins[J]. Microbiology and Molecular Biology Reviews, 2006, 70(3):583-604.
[10]ZHANG Y, ZHANG K, FANG A, et al. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics[J]. Nature Communications, 2014, 5: 3849.
[11]YU M N, YU J J, HU J K, et al. Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis[J]. Fungal Genetics and Biology, 2015, 76: 10-19.
[12]张君成,陈志谊,张炳欣,等. 稻曲病的接种技术研究[J]. 植物病理学报, 2004, 34(5): 463-467.
[13]LIANG Y F, HAN Y, WANG C F, et al. Targeted deletion of the USTA and UvSLT2 genes efficiently in Ustilaginoidea virens with the CRISPR-Cas9 system[J]. Frontiers in Plant Science, 2018, 9: 699.
[14]GUO W W, GAO Y X, YU Z M, et al. The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus Ustilaginoidea virens[J]. Fungal Genetics and Biology, 2019, 129: 65-73.
[15]TANG J T, BAI J, CHEN X Y, et al. Two protein kinases UvPmk1 and UvCDC2 with significant functions in conidiation, stress response and pathogenicity of rice false smut fungus Ustilaginoidea virens[J]. Current Genetics, 2020, 66(10): 409-420.
[16]XIE S L, WANG Y F, WEI W, et al. The Bax inhibitor UvBI-1, a negative regulator of mycelial growth and conidiation, mediates stress response and is critical for pathogenicity of the rice false smut fungus Ustilaginoidea virens[J]. Current Genetics, 2019, 65(5): 1185-1197.
[17]GOLDAR M M, JEONG H T, TANAKA K, et al. Moc3, a novel Zn finger type protein involved in sexual development, ascus formation, and stress response of Schizosaccharomyces pombe[J]. Current Genetics, 2005, 48(6): 345-355.
[18]CAMPBELL R N, LEVERNTZ M K, RYAN L A, et al. Metabolic control of transcription: paradigms and lessons from Schizosaccharomyces cerevisiae[J]. Biochemical Journal, 2008, 414(2): 177-187.
[19]LU J P, CAO H J, ZHANG L L, et al. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus[J]. PLoS Pathogens, 2014, 10(10): e1004432.
[20]HAGIWARA D, MIURA D, SHIMIZU K, et al. A novel Zn2Cys6 transcription factor AtrR plays a key role in an azole resistance mechanism of Aspergillus fumigatus by co-regulating cyp51A and cdr1B expressions[J]. PLoS Pathogens, 2016, 13(1): e1006096.
[21]SON H, SEO Y S, MIN K, et al. A phenome-based functional analysis of transcription factors in the cereal head blight fungus Fusarium graminearum[J]. PLoS Pathogens, 2011, 7(10): e1002310.
[22]LONG N B, ORASCH T, ZHANG S Z, et al. The Zn2Cys6-type transcription factor LeuB cross-links regulation of leucine biosynthesis and iron acquisition in Aspergillus fumigatus[J]. PLoS Genetics, 2018, 14(10): e1007762.
[23]ZHAO C Z, WAALWIJK C, DE WIT P J G M, et al. EBR1, a novel Zn2Cys6 transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum[J]. Molecular Plant-Microbe Interactions, 2011, 24(12):1407-1418.
[24]GARG A, GOLDGUR Y, SCHWER B, et al. Distinctive structural basis for DNA recognition by the fission yeast Zn2Cys6 transcription factor Pho7 and its role in phosphate homeostasis[J]. Nucleic Acids Research, 2018, 46(21): 11262-11273.
[25]罗丽芬,江冰冰,邓琳梅,等. 三七根系分泌物中几种成分对根腐病原菌生长的影响[J].南方农业学报,2020,51(12):2952-2961.
[26]刘一贤,蔡志英,施玉萍,等. 辣木果腐病病原菌兰生炭疽菌(Colletotrichum chlorophyti)生物学特性及其防治药剂室内毒力测定[J].江苏农业科学,2019,47(20):133-137.
[27]RHEE S G. H2O2, a necessary evil for cell signaling[J]. Science, 2006, 312(5782): 1882-1883.
[28]WAGNER A. Genetic redundancy caused by gene duplications and its evolution in networks of transcriptional regulators [J]. Biological Cybernetics, 1996, 74(6):557-567.
[29]WAGNER A. Redundant gene functions and natural selection[J]. Journal of Evolutionary Biology, 1999, 12(1):2646-2658.