[1]俞咪娜,于俊杰,曹慧娟,等.稻曲病病菌Zn2(Ⅱ)Cys6型转录因子UvZC1基因的克隆及功能分析[J].江苏农业学报,2021,(06):1400-1408.[doi:doi:10.3969/j.issn.1000-4440.2021.05.006]
 YU Mi-na,YU Jun-jie,CAO Hui-juan,et al.Clone and functional research of Zn2(Ⅱ) Cys6 transcription factor UvZC1 gene in Ustilaginoidea virens[J].,2021,(06):1400-1408.[doi:doi:10.3969/j.issn.1000-4440.2021.05.006]
点击复制

稻曲病病菌Zn2(Ⅱ)Cys6型转录因子UvZC1基因的克隆及功能分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年06期
页码:
1400-1408
栏目:
植物保护
出版日期:
2021-12-30

文章信息/Info

Title:
Clone and functional research of Zn2(Ⅱ) Cys6 transcription factor UvZC1 gene in Ustilaginoidea virens
作者:
俞咪娜于俊杰曹慧娟潘夏艳宋天巧刘永锋
(江苏省农业科学院植物保护研究所,江苏南京210014)
Author(s):
YU Mi-naYU Jun-jieCAO Hui-juanPAN Xia-yanSONG Tian-qiaoLIU Yong-feng
(Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
稻曲病病菌Zn2(Ⅱ)Cys6转录因子UvZC1基因敲除基因功能致病性
Keywords:
Ustilaginoidea virensZn2(Ⅱ)Cys6 transcription factor UvZC1gene knocking-outgene functionpathogenicity
分类号:
S511.01
DOI:
doi:10.3969/j.issn.1000-4440.2021.05.006
文献标志码:
A
摘要:
为明确Zn2(Ⅱ)Cys6型转录因子UvZC1在稻曲病病菌中的功能,利用CRISPR-Cas9结合同源片段双交换的方法,诱导野生型菌株Jt209发生UvZC1基因缺失突变。结果显示,与Jt209相比,UvZC1基因缺失突变体的生长速率和分生孢子量均显著下降,且突变体中部分与稻曲病病菌其他产分生孢子相关基因表达量发生变化;此外,该基因的缺失导致突变体对十二烷基硫酸钠(SDS)更敏感,而对氧化胁迫的耐受性增强;在稻曲病病菌接种水稻后24 h、48 h的侵染早期,UvZC1基因的表达量明显上升,但基因缺失突变体接种水稻后形成的稻曲球数量与野生型之间没有差异。综上所述,UvZC1基因参与稻曲病病菌营养生长、分生孢子产生和侵染水稻过程,还与稻曲病病菌细胞壁的完整性和响应氧化胁迫相关。
Abstract:
In order to clarify the function of Zn2(Ⅱ) Cys6 transcription factor UvZC1 in Ustilaginoidea virens, gene deletion mutation was carried out by the CRISPR-Cas9-based homologous recombination system. Compared with the wild-type strain Jt209, the growth rate and conidia production of △UvZC1 mutants were significantly decreased, and the expression levels of genes related to the sporulation of U. virens were also changed. In addition, the UvZC1 deletion mutants showed more sensitivity to sodium dodecyl sulfate (SDS), and the tolerance to oxidative stress was enhanced. At the early stage of infection (24 h and 48 h after inoculation), the expression of UvZC1 gene increased significantly. However, no significant difference in the number of rice false smut balls between the wild type and the △UvZC1 mutants was found. Overall, UvZC1 gene has roles in regulating hyphal growth, conidiation, cell wall integrity and oxidative stress response in U. virens. Furthermore, UvZC1 gene is also involved in the infection process of U. virens.

参考文献/References:

[1]SUN W X, FAN J, FANG A F, et al. Ustilaginoidea virens: insights into an emerging rice pathogen[J]. Annual Review of Phytopathology, 2020, 58: 363-385.
[2]FAN J, YANG J, WANG Y Q, et al. Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease[J]. Molecular Plant Pathology, 2016, 17(9): 1321-1330.
[3]李小娟,刘二明,肖启明,等. 水稻对稻曲病抗性的分级及相应级别的产量损失[J]. 湖南农业大学学报(自然科学版),2011, 37(3):275-279.
[4]MENG J J, GU G, DANG P Q, et al. Sorbicillinoids from the fungus Ustilaginoidea virens and their phytotoxic, cytotoxic, and antimicrobial activities[J]. Frontiers in Chemistry, 2019, 7: 435.
[5]LI Y J, WANG M, LIU Z H, et al. Towards understanding the biosynthetic pathway for ustilaginoidin mycotoxins in Ustilaginoidea virens[J]. Environmental Microbiology, 2019, 21(8): 2629-2643.
[6]YU J J, YU M N, SONG T Q, et al. A homeobox transcription factor UvHOX2 regulates chlamydospore formation, conidiogenesis, and pathogenicity in Ustilaginoidea virens[J]. Frontiers in Microbiology, 2019, 10: 1071.
[7]CHEN X, HAI D, TANG J, et al. UvCom1 is an important regulator required for development and infection in the rice false smut fungus Ustilaginoidea virens[J]. Phytopathology, 2020, 110(2): 483-493.
[8]ZHENG D W, WANG Y, HAN Y, et al. UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens[J]. Scientific Reports, 2016, 6: 24824.
[9]MACPHERSON S, LAROCHELLE M, TURCOTTE B. A fungal family of transcriptional regulators: the zinc cluster proteins[J]. Microbiology and Molecular Biology Reviews, 2006, 70(3):583-604.
[10]ZHANG Y, ZHANG K, FANG A, et al. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics[J]. Nature Communications, 2014, 5: 3849.
[11]YU M N, YU J J, HU J K, et al. Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis[J]. Fungal Genetics and Biology, 2015, 76: 10-19.
[12]张君成,陈志谊,张炳欣,等. 稻曲病的接种技术研究[J]. 植物病理学报, 2004, 34(5): 463-467.
[13]LIANG Y F, HAN Y, WANG C F, et al. Targeted deletion of the USTA and UvSLT2 genes efficiently in Ustilaginoidea virens with the CRISPR-Cas9 system[J]. Frontiers in Plant Science, 2018, 9: 699.
[14]GUO W W, GAO Y X, YU Z M, et al. The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus Ustilaginoidea virens[J]. Fungal Genetics and Biology, 2019, 129: 65-73.
[15]TANG J T, BAI J, CHEN X Y, et al. Two protein kinases UvPmk1 and UvCDC2 with significant functions in conidiation, stress response and pathogenicity of rice false smut fungus Ustilaginoidea virens[J]. Current Genetics, 2020, 66(10): 409-420.
[16]XIE S L, WANG Y F, WEI W, et al. The Bax inhibitor UvBI-1, a negative regulator of mycelial growth and conidiation, mediates stress response and is critical for pathogenicity of the rice false smut fungus Ustilaginoidea virens[J]. Current Genetics, 2019, 65(5): 1185-1197.
[17]GOLDAR M M, JEONG H T, TANAKA K, et al. Moc3, a novel Zn finger type protein involved in sexual development, ascus formation, and stress response of Schizosaccharomyces pombe[J]. Current Genetics, 2005, 48(6): 345-355.
[18]CAMPBELL R N, LEVERNTZ M K, RYAN L A, et al. Metabolic control of transcription: paradigms and lessons from Schizosaccharomyces cerevisiae[J]. Biochemical Journal, 2008, 414(2): 177-187.
[19]LU J P, CAO H J, ZHANG L L, et al. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus[J]. PLoS Pathogens, 2014, 10(10): e1004432.
[20]HAGIWARA D, MIURA D, SHIMIZU K, et al. A novel Zn2Cys6 transcription factor AtrR plays a key role in an azole resistance mechanism of Aspergillus fumigatus by co-regulating cyp51A and cdr1B expressions[J]. PLoS Pathogens, 2016, 13(1): e1006096.
[21]SON H, SEO Y S, MIN K, et al. A phenome-based functional analysis of transcription factors in the cereal head blight fungus Fusarium graminearum[J]. PLoS Pathogens, 2011, 7(10): e1002310.
[22]LONG N B, ORASCH T, ZHANG S Z, et al. The Zn2Cys6-type transcription factor LeuB cross-links regulation of leucine biosynthesis and iron acquisition in Aspergillus fumigatus[J]. PLoS Genetics, 2018, 14(10): e1007762.
[23]ZHAO C Z, WAALWIJK C, DE WIT P J G M, et al. EBR1, a novel Zn2Cys6 transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum[J]. Molecular Plant-Microbe Interactions, 2011, 24(12):1407-1418.
[24]GARG A, GOLDGUR Y, SCHWER B, et al. Distinctive structural basis for DNA recognition by the fission yeast Zn2Cys6 transcription factor Pho7 and its role in phosphate homeostasis[J]. Nucleic Acids Research, 2018, 46(21): 11262-11273.
[25]罗丽芬,江冰冰,邓琳梅,等. 三七根系分泌物中几种成分对根腐病原菌生长的影响[J].南方农业学报,2020,51(12):2952-2961.
[26]刘一贤,蔡志英,施玉萍,等. 辣木果腐病病原菌兰生炭疽菌(Colletotrichum chlorophyti)生物学特性及其防治药剂室内毒力测定[J].江苏农业科学,2019,47(20):133-137.
[27]RHEE S G. H2O2, a necessary evil for cell signaling[J]. Science, 2006, 312(5782): 1882-1883.
[28]WAGNER A. Genetic redundancy caused by gene duplications and its evolution in networks of transcriptional regulators [J]. Biological Cybernetics, 1996, 74(6):557-567.
[29]WAGNER A. Redundant gene functions and natural selection[J]. Journal of Evolutionary Biology, 1999, 12(1):2646-2658.

备注/Memo

备注/Memo:
收稿日期:2021-02-18基金项目:江苏省自然科学基金项目(BK20180296);国家自然科学基金项目(31401700)作者简介:俞咪娜(1985-),女,浙江杭州人,硕士,副研究员,主要研究方向为水稻真菌病害致病机制等。(E-mail)zjpsyu@163.com通讯作者:刘永锋,(E-mail)liuyf@jaas.ac.cn
更新日期/Last Update: 2022-01-07