[1]孙宇,刘志鑫,叶子,等.杧果RAV基因家族的全基因组分析[J].江苏农业学报,2021,(04):957-967.[doi:doi:10.3969/j.issn.1000-4440.2021.04.019]
 SUN Yu,LIU Zhi-xin,YE Zi,et al.Genome-wide analysis of the RAV gene family in mango[J].,2021,(04):957-967.[doi:doi:10.3969/j.issn.1000-4440.2021.04.019]
点击复制

杧果RAV基因家族的全基因组分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年04期
页码:
957-967
栏目:
园艺
出版日期:
2021-08-28

文章信息/Info

Title:
Genome-wide analysis of the RAV gene family in mango
作者:
孙宇12刘志鑫2叶子12罗睿雄3刘晓妹12蒲金基12张贺12
(1.海南大学植物保护学院,海南海口570228;2.中国热带农业科学院环境与植物保护研究所/农业农村部热带作物有害生物综合治理重点实验室,海南海口571101;3.中国热带农业科学院热带作物品种资源研究所,海南海口571101)
Author(s):
SUN Yu12LIU Zhi-xin2YE Zi12LUO Rui-xiong3LIU Xiao-mei12PU Jin-ji12ZHANG He12
(1.College of Plant Protection, Hainan University, Haikou 570228, China;2.Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Grops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China;3.Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China)
关键词:
杧果RAV基因家族全基因组鉴定表达分析
Keywords:
mangoRAV gene familygenomic identificationexpression analysis
分类号:
S667.7
DOI:
doi:10.3969/j.issn.1000-4440.2021.04.019
文献标志码:
A
摘要:
为了揭示RAV家族基因在杧果中的序列特征及其表达特性,采用生物信息学方法对杧果RAV家族基因进行序列分析,并通过qRT-PCR技术研究杧果胶孢炭疽菌和细菌性黑斑病菌侵染过程中该家族基因的相对表达量。结果表明,从杧果基因组中鉴定出6个RAV基因家族成员,其编码的蛋白质均具有AP2和B3超家族保守域结构,命名为MiRAV1~MiRAV6。MiRAV1和MiRAV5为不稳定亲水碱性蛋白质,MiRAV2和MiRAV3为不稳定亲水酸性蛋白质,MiRAV4为稳定亲水酸性蛋白质,MiRAV6为稳定亲水碱性蛋白质。杧果RAV基因编码的蛋白质主要定位于细胞核中,无规则卷曲和α-螺旋是6个MiRAVs蛋白二级结构的主要元件。系统进化树结合基序分析结果表明,在杧果与拟南芥、烟草、苹果、菠萝和毛果杨中,RAV家族基因具有多样性,在进化上结构具有保守性。qRT-PCR结果显示,胶孢炭疽菌侵染过程中,杧果RAV基因的相对表达量均显著下调;细菌性黑斑病菌侵染过程中,MiRAV1~ MiRAV6的相对表达量在3 h时均显著下调,MiRAV1、MiRAV2、MiRAV3和MiRAV6的相对表达量在6 h时均显著上调,MiRAV1、MiRAV5和MiRAV6的相对表达量分别在12 h、24 h、48 h、72 h时均显著上调。以上发现将为研究杧果RAV基因家族成员的功能和作用机制奠定基础。
Abstract:
In order to reveal the sequence and expression characteristics of RAV gene in Mangifera indica, the sequence of the RAV gene family was analyzed using bioinformatics methods, and the relative expression level of RAV gene family was studied by qRT-PCR during the infection of Colletotrichum gloeosporioides and Xanthomonas campestris pv. mangiferaeindicae. The results showed that six RAV gene family members were identified from the mango genome, and the encoded proteins had the conserved domains of the AP2 and B3 superfamily, named MiRAV1-MiRAV6. MiRAV1 and MiRAV5 were unstable hydrophilic basic proteins, MiRAV2 and MiRAV3 were unstable hydrophilic acidic proteins, MiRAV4 was a stable hydrophilic acidic protein, and MiRAV6 was a stable hydrophilic basic protein. The proteins encoded by RAV gene of mango were mainly located in the nucleus, and random coil and α-helix were the main elements of secondary structure of six MiRAVs proteins. Phylogenetic tree construction combined with motif analysis showed that, among mango and Arabidopsis thaliana, tobacco, apple, pineapple and Populus tomentosa, the RAV family genes were diverse and their structure was conservative in evolution. The results of qRT-PCR indicated that the relative expression of RAV gene in mango was significantly down regulated during the infection of Colletotrichum gloeosporioides. During the infection of Xanthomonas campestris pv. mangiferaeindicae, the relative expression levels of MiRAV1-MiRAV6 were significantly down regulated at 3 h, and the relative expression levels of MiRAV1, MiRAV2, MiRAV3 and MiRAV6 were significantly up-regulated at 6 h, and the relative expression levels of MiRAV1, MiRAV5 and MiRAV6 were significantly up-regulated at 12 h, 24 h, 48 h and 72 h, respectively. These results will lay a foundation for further study on the function and mechanism of RAV gene family members in mango.

参考文献/References:

[1]OHAMA N, SATO H, SHINOZAKI K, et al. Transcriptional regulatory network of plant heat stress response[J]. Trends in Plant Science, 2017, 22(1): 53-65.
[2]KIM Y S, AN C, PARK S, et al. CAMTA-mediated regulation of salicylic acid immunity pathway genes in arabidopsis exposed to low temperature and pathogen infection[J]. The Plant Cell, 2017, 29(10): 2465-2477.
[3]PRASAD K V S K, ABDRL-HAMEED A A E, XING D, et al. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress[J]. Scientific Reports, 2016, 6(1): 443-448.
[4]SCHWECHHEIMER C, BEVAN M. The regulation of transcription factor activity in plants[J]. Trend in Plant Science, 1998, 3(10): 278-283.
[5]GIRAUDAT J, HAUGE B M, VALON C, et al. Isolation of the Arabidopsis ABI3 gene by positional cloning[J]. The Plant Cell, 1992, 4(10): 1251-1261.
[6]SUZUKI M, KAO C Y, MCCARTY D R. The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity[J]. The Plant Cell Online, 1997, 9(5): 799-807.
[7]RIECHMANN J L, LAIN S, GARCIA J A. Highlights and prospects of potyvirus molecular biology[J]. Journal of General Virology, 1992, 73(1): 1-16.
[8]KAGAYA Y, OHMIYA K, HATTORI T. RAV1, a novel DNA-binding protein, binds to bipartiterecognition sequence through two distinct DNA-binding domains uniquely found in higher plants[J]. Nucleic Acids Res, 1999, 27(2): 470.
[9]RIECHMANN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors:genome-widecomparative analysis among eukaryotes[J]. Science, 2000, 290(10): 2105.
[10]FINKELSTEIN R R, WANG M L, LYNCH T J, et al. The arabidopsis abscisic acid response locusABI4 encodes an APETALA2 domain protein[J]. Plant Cell, 1998, 10(6): 1043.
[11]孙尧,孙鑫,王雷. 毛果杨RAV/PLC基因生物信息学分析[J].广东农业科学, 2019, 46(12): 36-41,153.
[12]HU Y X, WANG Y X, LIU X F, et al. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development[J].Cell Research, 2004, 14(1): 8-15.
[13]SOHN K H, LEE S C, JUNG H W, et al. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance,and drought and salt stress tolerance[J].Plant Molecular Biology, 2006, 61(6): 897-915.
[14]蒋伦伟,胡丽芳,袁永成,等. 黄瓜RAV基因家族的全基因组分析[J].中国蔬菜, 2012, 1(16): 15-21.
[15]卢合均,周忠丽,陈浩东,等. 棉花RAV基因家族的全基因组分析[J].棉花学报, 2014, 26(6): 471-482.
[16] CHEN X, WANG Z, WANG X, et al. Isolationand characterization of GoRAV, a novel geneencoding a RAV-type protein in Galegae orientalis[J].Genes Genet Syst, 2009, 84(2): 101.
[17]SRINIVASAN C, LIU Z R, HEIDMANN I, et al. Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.)[J].Planta, 2007, 225: 341-351.
[18]陈林波,李叶云,王琴,等. 茶树冷诱导基因RAV的克隆与表达特性分析[J].植物生理学通讯, 2010, 46(4): 354.
[19]PENG W, YING F L, JIAN F H, et al. The genome evolution and domestication of tropical fruit mango[J]. Genome Biology, 2020, 21(1). Doi:10.1186/s13059-020-01959-8.
[20]FINN R D, COGGILL P, EBERHARDT R Y, et al. The pfam protein families database: towards a more sustainable future[J].Nucleic Acids Research, 2016, 44:279-285.
[21]GASTEIGER E, GATTIKER A, HOOGLAND C, et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis[J].Nucleic Acids Research, 2003, 31(13): 3784-3788.
[22]BAILEY T L, BODEN M, BUSKE F A, et al. MEME SUITE: tools for motif discovery and searching[J].Nucleic Acids Research, 2009, 37: 202-208.
[23]KUMAR S, STECHER G, TAMUR K. MEGA7: molecular evolutionary genetics analysis Version 7.0 for bigger datasets [J].Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
[24]夏杨,苏初连,晁骏,等. 菠萝VOZ转录因子序列特征及其对非生物胁迫的响应[J].西北植物学报, 2018, 38(7): 1228-1234.
[25]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 [-Delta Delta C(T)] method [J].Methods-A Companion to Methods in Enzymology, 2001, 25(4): 402-408.
[26]韩林贺,徐同庆,任昂彦,等.普通烟草RAV家族基因结构与功能分析[J].基因组学与应用生物学, 2019, 38(4): 1658-1665.
[27]蒲金基,张贺,周文忠. 芒果病害综合防治技术[J].中国热带农业, 2015(3): 38-42.
[28]杨郑州,黄柳芳,谢晓娜,等. 叶疫病菌侵染芒果后叶片细胞壁降解酶活性测定[J]. 江苏农业科学,2019,47(10):138-141.
[29]喻群芳,漆艳香,张辉强,等. 4种生防菌对芒果细菌性黑斑病的田间防效[J].中国热带农业, 2019(3): 23-25.
[30]于海英,兰建强,王晓燕,等. 芒果胶孢炭疽菌致病性的初步研究[C]//中国植物病理学会. 中国植物病理学会2012年学术年会论文集. 北京:中国农业科学技术出版社, 2012: 210-213.
[31]LI C W, SU R C, CHENG C P, et al. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway [J].Plant Physiology, 2011, 156(1):213-227.

备注/Memo

备注/Memo:
收稿日期:2020-11-25基金项目:国家重点研发专项(2019YFD1000504);中国热带农业科学院基本科研业务费专项(1630042017019)作者简介:孙宇(1995-),男,海南三亚人,硕士研究生,研究方向为植物保护。(E-mail)sunyuqp@qq.com通讯作者:张贺,(E-mail)atzzhef@163.com;蒲金基,(E-mail)cataspjj@163.com
更新日期/Last Update: 2021-09-06