[1]陈鸣,闫春妮,王瑶瑶,等.潮汐流人工湿地除污效果和基质酶活性[J].江苏农业学报,2021,(04):919-928.[doi:doi:10.3969/j.issn.1000-4440.2021.04.014]
 CHEN Ming,YAN Chun-ni,WANG Yao-yao,et al.Decontamination effect and substrate enzyme activities of tidal flow constructed wetland[J].,2021,(04):919-928.[doi:doi:10.3969/j.issn.1000-4440.2021.04.014]
点击复制

潮汐流人工湿地除污效果和基质酶活性()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年04期
页码:
919-928
栏目:
耕作栽培·资源环境
出版日期:
2021-08-28

文章信息/Info

Title:
Decontamination effect and substrate enzyme activities of tidal flow constructed wetland
作者:
陈鸣1闫春妮2王瑶瑶2黄娟2
(1.南京市生态环境保护科学研究院,江苏南京210013;2.东南大学土木工程学院市政工程系,江苏南京210096)
Author(s):
CHEN Ming1YAN Chun-ni2WANG Yao-yao2HUANG Juan2
(1.Nanjing Research Institute of Environmental Protection, Nanjing 210013, China;2.Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China)
关键词:
潮汐流人工湿地黄菖蒲水位污染物降解酶活性
Keywords:
tidal flow constructed wetland Iris pseudacoruswater levelpollutant degradationenzyme activities
分类号:
X52
DOI:
doi:10.3969/j.issn.1000-4440.2021.04.014
文献标志码:
A
摘要:
为探究植物和水位对潮汐流人工湿地净化能力的影响,对无植物和不同水位运行的黄菖蒲湿地除污效果、污染物降解动力学和基质酶活性进行了研究。结果表明,黄菖蒲使总氮(TN)和总磷(TP)去除效果分别提高26.56个百分点和21.35个百分点,低水位使铵态氮(NH+4-N)去除效果提高12.77个百分点,饱和黄菖蒲湿地整体除污效果最佳,化学需氧(CODCr)量、NH+4-N、TN和TP平均去除率分别为89.00%±2.68%、68.08%±2.90%、75.23%±2.81%和94.35%±1.18%。CODCr、NH+4-N和TP在淹没1 h内高效去除,无植物湿地淹没46 h后会发生磷解析,而TN去除需要较长的淹没时间。无植物湿地、半饱和及饱和黄菖蒲湿地脱氮限制路径分别为硝化作用、反硝化作用和硝化/反硝化协同作用。此外,不同基质酶对黄菖蒲和水位响应不同,黄菖蒲能提高脲酶和磷酸酶活性,这2种酶可作为湿地水质净化效果的评价指标,且脲酶对水位较为敏感。
Abstract:
To explore the effects of plants and water level on performance of tidal flow constructed wetland (TFCW) for wastewater treatment, the pollutant removal, contaminants degradation kinetics and substrate enzyme activities were studied under the presence of Iris pseudacorus and different water levels. The results demonstrated that the presence of I. pseudacorus increased total nitrogen (TN) and total phosphorus (TP) removal by 26.56 percentage point and 21.35 percentage point, respectively, while low water level showed 12.77 percentage point increase for ammonium nitrogen (NH+4-N) removal. The saturated TFCW planted I. pseudacorus showed the optimal performance, and the average removal rates of chemical oxygen demand (CODCr), NH+4-N, TN and TP were 89.00%±2.68%, 68.08%±2.90%, 75.23%±2.81% and 94.35%±1.18%, respectively. The majority of CODCr, NH+4-N and TP could be decontaminated during one hour flooded time. It was found that the long flood could cause absorbed phosphorus in anaerobic environment return into wastewater, while it benefited TN degradation. The nitrogen removals in unplanted TFCW, unsaturated TFCW and saturated TFCW were mainly affected by microbial nitrification, denitrification and synergistic effect of nitrification/denitrification, respectively. In addition, there were different response of enzyme activities to I. pseudacorus and water level. The presence of I. pseudacorus can improve the activities of urease and phosphatases, and these two enzymes can be used as evaluation indicators for pollutant removal in constructed wetlands. The urease is found to be high sensitivity to water level.

参考文献/References:

[1]VARMA M, GUPTA A K, GHOSAL P S, et al. A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature[J]. Science of the Total Environment, 2021,755: 142540.
[2]蔡张杰,崔丽娟,李晶,等. 低温条件下人工湿地氨氧化微生物的群落结构特征[J]. 江苏农业学报, 2020,36(2): 373-383.
[3]ILYAS H, MASIH I. Intensification of constructed wetlands for land area reduction: a review[J]. Environmental Science and Pollution Research, 2017,24(13): 12081-12091.
[4]CHANG Y, WU S, ZHANG T, et al. Dynamics of nitrogen transformation depending on different operational strategies in laboratory-scale tidal flow constructed wetlands[J]. Science of the Total Environment, 2014,487: 49-56.
[5]ZHANG Q, YANG Y, CHEN F, et al. Effects of hydraulic loading rate and substrate on ammonium removal in tidal flow constructed wetlands treating black and odorous water bodies[J]. Bioresource Technology, 2021,321: 124468.
[6]TAN X, YANG Y, LI X, et al. Intensified nitrogen removal by heterotrophic nitrification aerobic denitrification bacteria in two pilot-scale tidal flow constructed wetlands: Influence of influent C/N ratios and tidal strategies[J]. Bioresource Technology, 2020,302: 122803.
[7]LI L, HE C, JI G, et al. Nitrogen removal pathways in a tidal flow constructed wetland under flooded time constraints[J]. Ecological Engineering, 2015,81: 266-271.
[8]ROTH J J, PASSIG F H, ZANETTI F L, et al. Influence of the flooded time on the performance of a tidal flow constructed wetland treating urban stream water[J]. Science of the Total Environment, 2021,758: 143652.
[9]刘冰,郑煜铭,秦会安,等. 填料对潮汐流人工湿地中CANON作用强化的影响[J]. 环境科学, 2021,42(1): 283-292.
[10]KIZITO S, LV T, WU S, et al. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation[J]. Science of the Total Environment, 2017,592: 197-205.
[11]BASSANI L, PELISSARI C, DA SILVA A R, et al. Feeding mode influence on treatment performance of unsaturated and partially saturated vertical flow constructed wetland[J]. Science of the Total Environment, 2021,754: 142400.
[12]DU L, ZHAO Y, WANG C, et al. Effects of plant on denitrification pathways in integrated vertical-flow constructed wetland treating swine wastewater[J]. Ecotoxicology and Environmental Safety, 2020,201: 110752.
[13]郭泓利,李鑫玮, 任钦毅, 等. 全国典型城市污水处理厂进水水质特征分析[J]. 给水排水, 2018,54(6): 12-15.
[14]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 4 版.北京:中国环境科学出版社, 2002.
[15]董磊,林莉,赵良元,等. 长江中、下游干流磷的沿程分布特征研究[J]. 长江科学院院报, 2015,32(6): 70-75.
[16]SAEED T, SUN G. A comprehensive review on nutrients and organics removal from different wastewaters employing subsurface flow constructed wetlands[J]. Critical Reviews in Environmental Science and Technology, 2017,47(4): 203-288.
[17]靳慧征,王振,丁亚男. 排水速率对潮汐流人工湿地中CANON作用的强化[J]. 中国环境科学, 2018,38(6): 2182-2192.
[18]刘国臣,王福浩,梁家成,等. 不同水位垂直流人工湿地中植物及微生物特征[J]. 中国海洋大学学报(自然科学版), 2019,49(2): 98-105.
[19]LU S B, GAO X R, WU P T, et al. Assessment of the treatment of domestic sewage by a vertical-flow artificial wetland at different operating water levels[J]. Journal of Cleaner Production, 2019,208: 649-655.
[20]KUMAR S, DUTTA V. Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: an overview[J]. Environmental Science and Pollution Research, 2019,26(12): 11662-11673.
[21]ZHI W, JI G D. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J]. Water Research, 2014,64: 32-41.
[22]YU X, KNIG T, QI Z, et al. Nitrogen and phosphorus removal of locally adapted plant species used in constructed wetlands in China[J]. Water Science & Technology, 2012,66(4): 695.
[23]刘晓伟,谢丹平,李开明,等. 溶解氧变化对底泥酶活性及微生物多样性的影响[J]. 环境科学与技术, 2013,36(6): 6-11.
[24]LI M, LIANG Z, CALLIER M D, et al. Nitrogen and organic matter removal and enzyme activities in constructed wetlands operated under different hydraulic operating regimes[J]. Aquaculture, 2018,496: 247-254.
[25]WANG R, BALDY V, PRISSOL C, et al. Influence of plants on microbial activity in a vertical-downflow wetland system treating waste activated sludge with high organic matter concentrations[J]. Journal of Environmental Management, 2012,95: S158-S164.
[26]岳春雷,常杰,葛滢,等. 人工湿地基质中土壤酶空间分布及其与水质净化效果之间的相关性[J]. 科技通报, 2004(2): 112-115.

备注/Memo

备注/Memo:
收稿日期:2021-01-12基金项目:国家自然科学基金项目(51479034)作者简介:陈鸣(1981-),女,江苏盐城人,硕士研究生,主要从事水污染防治研究。(E-mail)05499105@163.com通讯作者:黄娟,(E-mail)101010942@seu.edu.cn
更新日期/Last Update: 2021-09-06