参考文献/References:
[1]ZHAO H, JU Y L, JIANG J F, et al. Downy mildew resistance identification and SSR molecular marker[J]. Scientia Horticulturae, 2019, 252: 212-221.
[2]CHEN M, BRUN F, RAYNAL M, et al. Use of probabilistic expert elicitation for assessing risk of appearance of grape downy mildew[J]. Crop Protection, 2019, 126: 104926.
[3]杜蕙,蒋晶晶,王春明,等. 天水地区葡萄霜霉病田间病情、孢子囊数量动态及病害始发关键因子分析[J]. 草业学报, 2020, 29(5): 191-197.
[4]郭艳兰,牟德生,王多文,等. 武威地区酿酒葡萄霜霉病发生流行规律研究[J]. 中国植保导刊, 2020, 40(1): 48-54.
[5]张玮,燕继晔,刘梅,等. 葡萄霜霉病流行与预测研究进展[J]. 中国果树, 2020(3): 11-15.
[6]李文学,马榕,郭琰杰,等. 贺兰山东麓酿酒葡萄霜霉菌孢子囊扩散与田间病情的相关研究[J]. 西北农林科技大学学报(自然科学版), 2020, 48(1): 111-118.
[7]朱文静,李林,李美清,等. 红外热成像与近红外光谱结合快速检测潜育期番茄花叶病[J]. 光谱学与光谱分析, 2018, 38(9): 2757-2762.
[8]李小龙,马占鸿,赵龙莲,等. 基于近红外光谱技术的小麦条锈病菌潜伏侵染的检测[J]. 光谱学与光谱分析, 2014, 34(7): 1853-1858.
[9]金恭玺,岳永亮,宋玉萍,等. 葡萄霜霉病初次侵染来源和初侵染的特点及防治[J]. 新疆农业科学, 2015, 52(6): 1105-1111.
[10]LUO Y, GU S, FELTS D, et al. Development of qPCR systems to quantify shoot infections by canker-causing pathogens in stone fruits and nut crops[J]. Journal of Applied Microbiology, 2017, 122(2): 416-428.
[11]LUO Y, LICHTEMBERG P S F, NIEDERHOLZER F J A, et al. Understanding the process of latent infection of canker-causing pathogens in stone fruit and nut crops in California[J]. Plant Disease, 2019, 103(9): 2374-2384.
[12]YAN J H, LUO Y, CHEN T T, et al. Field distribution of wheat stripe rust latent infection using real-time PCR[J]. Plant Disease, 2012, 96(4): 544-551.
[13]ZHENG Y M, LUO Y, ZHOU Y L, et al. Real-time PCR quantification of latent infection of wheat powdery mildew in the field[J]. European Journal of Plant Pathology, 2013, 136(3): 565-575.
[14]潘阳,谷医林,骆勇,等. 双重real-time PCR定量测定小麦条锈菌潜伏侵染方法的建立与应用[J]. 植物病理学报, 2016, 46(4): 485-491.
[15]KNFER J, LOPISSO D T, KOOPMANN B, et al. Assessment of latent infection with Verticillium longisporum in field-grown oilseed rape by qPCR[J]. European Journal of Plant Pathology, 2017, 147(4): 819-831.
[16]刘琦,李薇,王翠翠,等. 基于Logistic、IBk以及Randomcommittee方法的条锈病潜育期小麦冠层光谱的定性识别[J]. 植物保护学报, 2018, 45(1): 146-152.
[17]LIU N, LEI Y, ZHANG M, et al. Latent infection of powdery mildew on volunteer wheat in Sichuan province, China[J]. Plant Disease, 2019, 103(6): 1084-1091.
[18]AMMOUR M S, BOVE F, TOFFOLATTI S L, et al. A real-time PCR assay for the quantification of Plasmopara viticola oospores in grapevine leaves[J]. Frontiers in Plant Science, 2020, 11: 1202.
[19]MARIMUTHU K, AYYANAR K, GANESAN M V, et al. Loop-mediated isothermal amplification assay for the detection of Plasmopara viticola infecting grapes[J]. Journal of Phytopathology, 2020, 168(3): 144-155.
[20]秦文韬,黄晓庆,孔繁芳,等. 葡萄霜霉病菌PCR检测方法的建立与应用[J]. 植物保护, 2014, 40(2): 99-102.
[21]李文学,肖瑞刚,吕苗苗,等. 葡萄霜霉病菌实时荧光定量PCR检测体系的建立和应用[J]. 中国农业科学, 2019, 52(9): 1529-1540.
[22]农业部农药检定所.农药田间药效试验准则(二)第122部分: 杀菌剂防治葡萄霜霉病:GB/T 17980. 122-2004 [S]. 北京: 中国标准出版社, 2004.
[23]闫佳会,骆勇,潘娟娟,等. 应用real-time PCR定量检测田间小麦条锈菌潜伏侵染的研究[J]. 植物病理学报, 2011, 41(6): 618-625.
[24]骆勇. 植物病害分子流行学概述[J]. 植物病理学报, 2009, 39(1): 1-10.
[25]沙月霞,王国珍,樊仲庆,等. 宁夏贺兰山东麓不同葡萄品种对霜霉病的抗性鉴定[J]. 果树学报, 2007, 24(6): 803-809.
[26]王国珍,樊仲庆,麻冬梅,等. 贺兰山东麓酿酒葡萄霜霉病流行规律及测报技术[J]. 植物保护, 2004, 30(4): 54-56.
[27]池俊玲,赵一博,郭江波,等. 不同浓度Cd2+胁迫下烟草实时荧光定量PCR内参基因的筛选[J].南方农业学报,2019,50(10): 2133-2140.
[28]石盼盼,谢文佳,刘燕,等.多重实时荧光PCR快速检测转基因大豆[J].江苏农业科学,2020,48(18):77-81.
[29]涂丽琴,吴淑华,干射香,等. 江苏省蚕豆上菜豆黄花叶病毒的分子鉴定[J]. 江苏农业学报,2019,35(4):804-810.
[30]DUVIVIER M, DEDEURWAERDER G, BATAILLE C, et al. Real-time PCR quantification and spatio-temporal distribution of airborne inoculum of Puccinia triticina in Belgium[J]. European Journal of Plant Pathology, 2016, 145(2): 405-420.
[31]初炳瑶,龚凯悦,谷医林,等. 应用real-time PCR评价三种杀菌剂对小麦条锈病的防治效果[J]. 植物病理学报, 2017, 47(4): 532-540.