[1]赵睿,程鑫,徐晓辉,等.基于PSO-SVR模型的温室病害预警防治系统[J].江苏农业学报,2021,(04):854-860.[doi:doi:10.3969/j.issn.1000-4440.2021.04.006]
 ZHAO Rui,CHENG Xin,XU Xiao-hui,et al.Early warning and prevention system for plant diseases in the greenhouse based on particle swarm optimization-support vector regression (PSO-SVR) model[J].,2021,(04):854-860.[doi:doi:10.3969/j.issn.1000-4440.2021.04.006]
点击复制

基于PSO-SVR模型的温室病害预警防治系统()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年04期
页码:
854-860
栏目:
植物保护
出版日期:
2021-08-28

文章信息/Info

Title:
Early warning and prevention system for plant diseases in the greenhouse based on particle swarm optimization-support vector regression (PSO-SVR) model
作者:
赵睿程鑫徐晓辉宋涛孙圆龙
(河北工业大学电子信息工程学院,天津300401)
Author(s):
ZHAO RuiCHENG XinXU Xiao-huiSONG TaoSUN Yuan-long
(School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China)
关键词:
PSO-SVR模型RBF核函数参数预测预警模型
Keywords:
particle swarm optimization-support vector regression (PSO-SVR) modelRBF kernel functionparameter predictionearly warning model
分类号:
S126
DOI:
doi:10.3969/j.issn.1000-4440.2021.04.006
文献标志码:
A
摘要:
为了解决温室植物病害预警、防治不及时的问题,设计了一种基于粒子群优化的支持向量机(PSO-SVR)模型的温室物联网预警系统。系统通过对观测数据进行分析训练,进而建立起植物病害预警模型,根据预测结果,结合易产生黄瓜病害的环境参数范围选择是否向用户发出预警警报,利用温室物联网控制技术实现对植物病害的生态防治。同时系统可以向搭载Android平台的设备发送提醒消息,并可以进行远程监控。该系统利用Wi-Fi技术将传感器系统和嵌入式设备组成星型网络,根据传感器返回的有效环境参数数据,通过PSO-SVR模型对温室温度、湿度参数进行预测,预测准确率分别为97.6%、96.8%,可以用作理论指导。测试结果表明,该系统响应时间短、运行稳定,可有效地监测并预测温室环境参数,对于植物病害的防治有较好的实际作用。
Abstract:
To solve the problems of lags in early warning and plant diseases prevention in the greenhouse, an early warning system of internet of things in the greenhouse based on particle swarm optimization-support vector machine (PSO-SVR) model was designed. Early warning model of plant diseases was established by the system through analyzing and training of the observed data. According to the predicted results and the scope of environmental parameters which were easy to cause cucumber diseases, the system could select whether to send early warnings to the users or not by control technology for internet of things in the greenhouse to realize ecological control of the plant diseases. At the same time, the system could send reminding messages to devices equipped with the Android platform, and could perform remote monitoring and control. The system used Wi-Fi technology to form the star network with the sensor system and the embedded device. According to the effective environmental parameter data returned by the sensor, the PSO-SVR model was used to predict the greenhouse temperature and humidity, and the prediction accuracies were 97.6% and 96.8% respectively, which could be used as theoretical direction. Test results showed that, the system responses with small time and is stable in operation, and can monitor and predict greenhouse environmental parameters effectively, which has a good practical effect on the prevention and control of plant diseases.

参考文献/References:

[1]秦志伟. “农业4.0”已露尖尖角[J].农村·农业·农民(B版),2015(9):4-6.
[2]李灯华,李哲敏,许世卫,等. 先进国家农业物联网的最新进展及对我国的启示[J].江苏农业科学,2016,44(10):1-5.
[3]刘聪锋,戴啸涛,储成祥. 国外农业物联网发展经验借鉴[J].通信企业管理,2015(1):62-64.
[4]杨文奇,刘希光,郭彦克,等. 温室环境物联网监测系统的设计[J].中国农机化学报,2017,38(4):105-108,140.
[5]朱均超,张强,赵岩. 基于物联网的农业大棚环境监测系统设计[J].中国农机化学报,2018,39(9):76-80.
[6]葛文杰,赵春江. 农业物联网研究与应用现状及发展对策研究[J].农业机械学报,2014,45(7):222-227.
[7]范琼,张武,张雪花,等. 温室小气候环境监测预警技术及应用研究[J].中国农机化学报,2016,37(5):71-75.
[8]吴久江,汪星,李群,等. 简易草莓大棚智慧管理系统设计与性能分析[J]. 农业机械学报, 2019, 50(12):295-303.
[9]杨俊成,李淑霞,李亮. 基于物联网与人工神经网络的温室监控方案[J].控制工程,2020,27(9):1649-1656.
[10]郁莹珺,徐达宇,寿国忠,等. 基于经验模态分解和小波神经网络的温室温湿度预测[J].江苏农业科学,2019,47(1):211-216.
[11]刘源,宋涛,徐晓辉,等. 基于多元回归模型的精准光照系统[J].中国农机化学报,2019,40(6):162-166.
[12]张传帅,徐岚俊,李小龙,等.日光温室主要环境参数对番茄本体长势的影响[J].中国农业大学学报,2019,24(10):118-124.
[13]LAI Y C, AHSAN A, SHOHRAB H M, et al. Performance modeling and analysis of TCP and UDP flows over software defined networks[J]. Journal of Network and Computer Applications, 2019, 130:76-88.
[14]WILLIAM D G. Using node and socket information to implement MPI Cartesian topologies[J]. Parallel Computing, 2019, 85:98-108.
[15]李飞,蒋敏兰. 基于支持向量机回归的蛋鸡产蛋率预测模型[J]. 江苏农业科学,2019,47(13):249-252.
[16]程鑫,徐晓辉,宋涛,等. 基于PSO-SVR模型的温室智能补光系统研究[J].中国农机化学报,2020,41(6):64-68,82.
[17]韩振荣. 温室黄瓜病虫害监测预警系统研究与实现[D].泰安:山东农业大学,2017.

备注/Memo

备注/Memo:
收稿日期:2020-12-15基金项目:河北省重点研发计划项目(19227212D、20327201D);石家庄市重点研发计划项目(191490144A、191130154A)作者简介:赵睿(1995-),女,河北邢台人,硕士研究生,研究方向为电子技术与智能系统。(E-mail)Zhao_ruiGZ@163.com通讯作者:徐晓辉,(E-mail)xxh@hebut.edu.cn
更新日期/Last Update: 2021-09-06