[1]苏良湖,王赛尔,纪荣婷,等.基于3DEEM-PARAFAC的短期稻虾共作土壤DOM荧光光谱分析[J].江苏农业学报,2021,(03):639-650.[doi:doi:10.3969/j.issn.1000-4440.2021.03.012]
 SU Liang-hu,WANG Sai-er,JI Rong-ting,et al.Fluorescence spectrometric analysis of dissolved organic matter(DOM) in soil from a short-term integrated rice-crayfish system based on 3DEEM-PARAFAC[J].,2021,(03):639-650.[doi:doi:10.3969/j.issn.1000-4440.2021.03.012]
点击复制

基于3DEEM-PARAFAC的短期稻虾共作土壤DOM荧光光谱分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年03期
页码:
639-650
栏目:
耕作栽培·资源环境
出版日期:
2021-06-30

文章信息/Info

Title:
Fluorescence spectrometric analysis of dissolved organic matter(DOM) in soil from a short-term integrated rice-crayfish system based on 3DEEM-PARAFAC
作者:
苏良湖王赛尔纪荣婷刘臣炜陈梅张龙江
(生态环境部南京环境科学研究所,江苏南京210042)
Author(s):
SU Liang-hu WANG Sai-er JI Rong-ting LIU Chen-wei CHEN Mei ZHANG Long-jiang
(Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China)
关键词:
稻虾共作土壤溶解性有机物(DOM)三维荧光光谱(3DEEM)平行因子(PARAFAC)分析
Keywords:
integrated rice-crayfish systemsoil dissolved organic matter (DOM)three-dimensional excitation emission matrix fluorescence spectrum (3DEEM)parallel factor (PARAFAC) analysis
分类号:
S153.6
DOI:
doi:10.3969/j.issn.1000-4440.2021.03.012
文献标志码:
A
摘要:
稻虾共作模式已在中国长江中下游地区广泛应用。为研究短期稻虾共作对土壤溶解性有机物(DOM)组成和腐殖化的影响,采用三维荧光光谱耦合平行因子法(3DEEM-PARAFAC)分析土壤DOM荧光组分和各组分变化规律,利用腐殖化指数(HIX)、腐殖酸与色氨酸荧光比值(A∶T)、新鲜指数(β:α)、McKnight荧光指数(MFI)、Y型荧光指数(YFI)等多种荧光光谱指数表征DOM腐殖化程度,并通过皮尔逊相关系数进行相关性分析。研究发现,土壤DOM包括3个荧光组分,C1为较低相对分子质量的腐殖质类物质,C2为较高芳香度的UVC类腐殖质,C3为酪氨酸类物质,未发现高相对分子质量腐殖质类物质。在0~20.0 cm表层土壤中,C1、C2组分荧光强度随采样时间的推迟呈先上升后下降趋势,峰值出现在水稻分蘖期或抽穗期,而C3组分荧光强度无明显变化规律。皮尔逊相关系数分析结果显示,腐殖质类物质C1荧光强度与C2荧光强度呈显著正相关性(r=0.99,P<0.001),蛋白质类物质C3荧光强度与其他荧光指数(强度)相关性均较弱(r<0.40)。HIX与C1荧光强度、A∶T呈显著正相关,均可被线性函数拟合。相较于MFI,YFI更能反映土壤中DOM的腐殖化变化特性,YFI与HIX可被指数函数较好拟合。研究认为,短期稻虾共作土壤的腐殖化特征主要受内源有机质降解影响,而受外源蛋白质类物质输入的影响较小,且难以通过分析溶解性有机碳含量来监测土壤有机质腐殖化程度。
Abstract:
Integrated rice-crayfish system has been widely used in the middle and lower reaches of Yangtze River in China. To study the effects of short-term integrated rice-crayfish system on composition and humification of dissolved organic matter (DOM) from the soil, three-dimensional excitation emission matrix fluorescence spectroscopy coupled parallel factor method (3DEEM-PARAFAC) was used to analyze the fluorescence components and the changes of each component of soil DOM. Different fluorescence spectrum indexes including humification index (HIX), ratio of humic acid fluoescence intensity to tryptophan fluorescence intensity (A∶T), freshness index (β∶α), McKnight fluorescence index (MFI), Y-type fluorescence index (YFI) were used to characterize the degree of DOM humification. Pearson correlation coefficient was used to analyze the correlation. The results showed that three fluorescence components were identified from soil DOM, containing humic substances with low relative molecular weight (C1), UVC humic substances with high aromatic degree (C2) and tyrosine-like substances (C3), no humic substance with relative high molecular weight was found. In the surface soil of 0-20.0 cm depht, the fluorescence intensity of C1 and C2 components increased firstly and then decreased as the sampling time pastponed, the highest value appeared at the tillering or heading stage of rice, while no definite trend was found for the C3 component. Pearson correlation coefficient analysis demonstrated that the fluorescence intensity of humic substances C1 and C2 showed significant positive correlation (r=0.99, P<0.001); the fluorescence intensity of protein substance C3 had weak relationship with other fluorescence indices (intensities) (r<0.40). HIX showed significant positive correlation with the fluorescence intensity of C1 and A∶T, which could be fitted by a linear function. Compared with MFI, YFI had sufcient distinguishing capacity to characterize the humification process of DOM in the soil; YFI and HIX could be fitted well by an exponential function. It can be concluded from the study that the humification characteristics of the soil in the short-term integrated rice-crayfish system are mainly affected by the degradation of endogenous organic matter, but are less affected by the input of exogenous protein substances. It is hard to monitor the humification degree of soil organic matter by analyzing dissolved organic carbon content of the soil.

参考文献/References:

[1]农业农村部办公厅. 稻渔综合种养生产技术指南[农办渔(2020)11号]补标准号[EB/OL].(2020-03-31)
[2020-11-08].http://www.gov.cn/zhengce/zhengceku/2020-04/03/content_5498676.htm.
[2]曹凑贵,江洋,汪金平,等. 稻虾共作模式的“双刃性”及可持续发展策略[J].中国生态农业学报, 2017, 25(9): 1245-1253.
[3]肖求清. 稻虾共作对稻田生物多样性的影响[D].武汉:华中农业大学,2017.
[4]程慧俊. 克氏原螯虾稻田养殖生态学的初步研究[D].武汉:湖北大学,2014.
[5]佀国涵,彭成林,徐祥玉,等. 稻虾共作模式对涝渍稻田土壤理化性状的影响[J]. 中国生态农业学报,2017,25(1): 61-68.
[6]奚业文,周洵. 稻虾连作共作稻田生态系统中物质循环和效益初步研究[J]. 中国水产, 2016(3):78-82.
[7]佀国涵. 长期稻虾共作模式下稻田土壤肥力变化特征研究[D]. 武汉:华中农业大学,2017.
[8]杨佳波,曾希柏. 水溶性有机物在土壤中的化学行为及其对环境的影响[J]. 中国生态农业学报, 2007, 15(5): 206-211.
[9]周江敏,代静玉,潘根兴. 土壤中水溶性有机质的结构特征及环境意义[J]. 农业环境科学学报, 2003, 22(6): 731-735.
[10]赵劲松,张旭东,袁星,等. 土壤溶解性有机质的特性与环境意义[J]. 应用生态学报, 2003, 14(1): 126-130.
[11]朱杰,刘海,吴邦魁,等. 稻虾共作对稻田土壤nirK反硝化微生物群落结构和多样性的影响[J]. 中国生态农业学报, 2018, 26(9): 1324-1332.
[12]SI G, PENG C, YUAN J, et al. Changes in soil microbial community composition and organiccarbon fractions in an integrated rice-crayfish farming system in subtropical China[J]. Scientific Reports, 2017, 7(1): 2856.
[13]刘赫群,李嘉尧,成永旭,等. 虾稻共作对稻田土壤线虫群落结构的影响[J]. 土壤, 2017, 49(6): 1121-1125.
[14]佀国涵,袁家富,彭成林,等. 稻虾共作模式氮和磷循环特征及平衡状况[J]. 中国生态农业学报, 2019, 27(9): 1309-1318.
[15]LI Q, XU L, XU L, et al. Influence of consecutive integrated rice-crayfish culture on phosphorus fertility of paddy soils[J]. Land Degradation & Development, 2018, 29(10): 3413-3422.
[16]孙自川. 稻虾共作下秸秆还田和投食对温室气体排放的影响[D]. 武汉:华中农业大学,2018.
[17]GAO J, LIANG C, SHEN G, et al. Spectral characteristics of dissolved organic matter in various agricultural soils throughout China[J]. Chemosphere, 2017, 176: 108-116.
[18]HUNT J F, OHNO T. Characterization of fresh and decomposed dissolved organic matter using excitation-emission matrix fluorescence spectroscopy and multiway analysis[J]. Journal of Agricultural and Food Chemistry, 2007, 55(6): 2121-2128.
[19]MURPHY K R, STEDMON C A, WENIG P, et al. OpenFluor- anonline spectral library of auto-fluorescence by organic compounds in the environment[J]. Analytical Methods, 2014, 6(3): 658-661.
[20]张广彩,于会彬,徐泽华,等. 基于三维荧光光谱结合平行因子法的蘑菇湖上覆水溶解性有机质特征分析[J]. 生态与农村环境学报, 2019, 35(7): 933-939.
[21]HANSEN A M, KRAUS T E C, PELLERIN B A, et al. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation[J]. Limnology and Oceanogr-aphy, 2016, 61(3): 1015-1032.
[22]MCKNIGHT D, BOYER E, WESTERHOFF P, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46: 38-48.
[23]HEO J, YOON Y, KIM D H, et al. A new fluorescence index with a fluorescence excitation-emission matrix for dissolved organic matter (DOM) characterization[J]. Desalination and Water Treatment, 2016, 57(43): 20270-20282.
[24]MURPHY K R, STEDMON C A, GRAEBER D, et al. Fluorescence spectroscopy and multi-way techniques PARAFAC[J]. Analytical Methods, 2013, 5(23): 6557-6566.
[25]CHANTIGNY M H. Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices[J]. Geoderma, 2003, 113(3): 357-380.
[26]COBLE P G. Marine optical biogeochemistry: the chemistry of ocean color[J]. Chemical Reviews, 2007, 107(2): 402-418.
[27]STEDMON C A, MARKAGER S, BRO R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82(3): 239-254.
[28]CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-Emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
[29]YAMASHITA Y, PANTON A, MAHAFFEY C, et al. Assessing the spatial and temporal variability of dissolved organic matter in Liverpool Bay using excitation-emission matrix fluorescence and parallel factor analysis[J]. Ocean Dynamics, 2011, 61(5): 569-579.
[30]SHUTOVA Y, BAKER A, BRIDGEMAN J, et al. Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: from PARAFAC analysis to online monitoring wavelengths[J]. Water Research, 2014, 54: 159-169.
[31]YAMASHITA Y, MAIE N, BRICEO H, et al. Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield, Venezuela[J]. Journal of Geophysical Research: Biogeosciences, 2010. Doi:10.1029/2009jg000987.
[32]DAINARD P G, GUGUEN C, MCDONALD N, et al. Photobleaching of fluorescent dissolved organic matter in Beaufort Sea and North Atlantic Subtropical Gyre[J]. Marine Chemistry, 2015, 177: 630-637.
[33]D′ANDRILLI J, FOREMAN C M, SIGL M, et al. A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core[J]. Clim Past, 2017, 13(5): 533-544.
[34]YAMASHITA Y, BOYER J N, JAFF R. Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy[J]. Continental Shelf Research, 2013, 66: 136-144.
[35]RETELLETTI B S, KIM J H, RYU J S, et al. Exploring sediment porewater dissolved organic matter (DOM) in a mud volcano: clues of a thermogenic DOM source from fluorescence spectroscopy[J]. Marine Chemistry, 2019, 211: 15-24.
[36]KALBITZ K, SCHMERWITZ J, SCHWESIG D, et al. Biodegradation of soil-derived dissolved organic matter as related to its properties[J]. Geoderma, 2003, 113(3): 273-291.
[37]MARTINS O, DEWES T. Loss of nitrogenous compounds during composting of animal wastesa[J]. Bioresource Technology, 1992, 42(2): 103-111.
[38]EHNVALL B. Organic matter properties and their relation to phosphorus and nitrogen concentrations in Swedish agricultural streams[D]. Uppsala:Swedish University of Agricultural Sciences,2017.

相似文献/References:

[1]王守红,张诚信,马林杰,等.稻虾共作模式下利于水稻产量稻米品质协同的适宜栽插密度[J].江苏农业学报,2023,(08):1668.[doi:doi:10.3969/j.issn.1000-4440.2023.08.006]
 WANG Shou-hong,ZHANG Cheng-xin,MA Lin-jie,et al.Suitable planting density for coordinated development of rice yield and quality under rice-crayfish co-cultivation mode[J].,2023,(03):1668.[doi:doi:10.3969/j.issn.1000-4440.2023.08.006]
[2]马林杰,张诚信,覃宝利,等.秸秆及生物炭还田对稻虾共作模式水稻产量、氮肥利用率及土壤肥力的影响[J].江苏农业学报,2024,(09):1623.[doi:doi:10.3969/j.issn.1000-4440.2024.09.006]
 MA Linjie,ZHANG Chengxin,QIN Baoli,et al.Effects of straw and biochar returning on rice yield, nitrogen use efficiency and soil fertility in a rice-crayfish integrated system[J].,2024,(03):1623.[doi:doi:10.3969/j.issn.1000-4440.2024.09.006]

备注/Memo

备注/Memo:
收稿日期:2020-11-18基金项目:中央级公益性科研院所基本科研业务专项(GYZX190203);国家重点研发计划项目(2016YFD0800601)作者简介:苏良湖(1986-),男,福建泉州人,博士,副研究员,主要研究方向为绿色发展技术与模式。(E-mail)sulianghu@nies.org通讯作者:陈梅,(E-mail)chenmei@nies.org;张龙江,(E-mail)zlj@nies.org
更新日期/Last Update: 2021-07-05