参考文献/References:
[1]MARTINEAU M, CONTE D, RAVEAUX R, et al. A survey on image-based insect classification [J]. Pattern Recognition, 2017, 65:273-284.
[2]YAAKOB S N, JAIN L. An insect classification analysis based on shape features using quality threshold ARTMAP and moment invariant [J]. Applied Intelligence, 2012, 37(1):12-30.
[3]FEDOR P, JAROMíR V, HAVEL J, et al. Artificial intelligence in pest insect monitoring [J]. Systematic Entomology, 2009, 34(2):398-400.
[4]WEN C, GUYER D E, LI W. Local feature-based identification and classification for orchard insects [J]. Biosystems Engineering, 2009, 104(3):299-307.
[5]WEN C, GUYER D. Image-based orchard insect automated identification and classification method [J]. Computers & Electronics in Agriculture, 2012, 89:110-115.
[6]BOISSARD P, MARTIN V, MOISAN S. A cognitive vision approach to early pest detection in greenhouse crops[J]. Computers & Electronics in Agriculture, 2008, 62(2):81-93.
[7]ZHU L Q, ZHANG Z. Automatic insect classification based on local mean colour feature and supported vector machines [J]. Oriental Insects, 2012, 46(3/4):260-269.
[8]FINA F, BIRCH P, YOUNG R, et al. Automatic plant pest detection and recognition using k-means clustering algorithm and correspondence filters [J]. International Journal of advanced Biotechnology & Research, 2013, 4:189-199.
[9]JAYME G A. Using digital image processing for counting whiteflies on soybean leaves [J]. Journal of Asia Pacific Entomology, 2014,17 (4):685-694.
[10]XIE C, ZHANG J, LI R, et al. Automatic classification for field crop insects via multiple-task sparse representation and multiple-kernel learning [J]. Computers & Electronics in Agriculture, 2015, 119:123-132.
[11]ZHANG H T, HU Y X, ZHANG H Y. Extraction and classifier design for image recognition of insect pests on field crops [J]. Advanced Materials Research, 2013(756/759):4063-4067.
[12]EBRAHIMI M A, KHOSHTAGHAZA M H, MINAEI S, et al. Vision-based pest detection based on SVM classification method [J]. Computers & Electronics in Agriculture, 2017, 137:52-58.
[13]WANG Z B, WANG K Y, LIU Z Q, et al. A cognitive vision method for insect pest image segmentation [J]. IFAC-Papers On Line, 2018, 15(17): 85-89.
[14]周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报, 2017,40(6): 1229-1251.
[15]BERNAL J, KUSHIBAR K, ASFAW D S, et al. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review[J]. Artificial Intelligence in Medicine, 2019, 95:64-81.
[16]TRKOLU M, HANBAY D. Plant disease and pest detection using deep learning-based features [J]. Turkish Journal of Electrical Engineering and Computer, 2019, 27(3):1636-1651.
[17]BHATT N, PATEL D. Insect identification among deep learning’s meta-architectures using tensorflow [J]. International Journal of Engineering and Advanced Technology, 2019,9(1):1910-1914
[18]NANNI L, MAGUOLO G, PANCINO F. Insect pest image detection and recognition based on bio-inspired methods [J].Ecological Informatics, 2020, 57:101089.
[19]WITENBERG S R, ADAO N A, D′IBIO L B. A deep learning model for recognition of pest insects in maize plantations [C]//FANTI M P,ZHOU M C. IEEE International Conference on Systems, Man and Cybernetics (SMC).Bari Italy:IEEE Press,2019.
[20]XIA D, CHEN P, WANG B. Insect detection and classification based on an improved convolutional neural network[J]. Sensors, 2018, 18(12):4169.
[21]LIU L, WANG R, XIE C, et al. Pestnet: an end-to-end deep learning approach for large-scale multi-class pest detection and classification [J]. IEEE Access, 2019, 7:45301-45312.
[22]钱蓉,孔娟娟,朱静波,等. 基于VGG-16卷积神经网络的水稻害虫智能识别研究[J]. 安徽农业科学, 2020, 48(5):235-238.
[23]徐诚极,王晓峰,杨亚东. Attention-YOLO:引入注意力机制的YOLO检测算法[J]. 计算机工程与应用, 2019, 55(6):19-29,131.
[24]BARROS P, PARISI G I, WEBER C, et al. Emotion-modulated attention improves expression recognition: a deep learning model[J]. Neurocomputing, 2017, 253(30):104-114.
[25]梁斌,刘全,徐进.基于多注意力卷积神经网络的特定目标情感分析[J]. 计算机研究与发展,2017,54(8): 1724-1735.
[26]乐毅,王文宇,张凯,等.基于多层注意力机制的农业病虫害远程监督关系抽取研究[J]. 安徽农业大学学报,2020,47 (4):189-193.
[27]孙皓泽,常天庆,王全东,等.一种基于分层多尺度卷积特征提取的坦克装甲目标图像检测方法[J]. 兵工学报, 2017(9):1681-1691.
[28]MUSTAFA H T, YANG J, ZAREAPOOR M. Multi-scale convolutional neural network for multi-focus image fusion [J]. Image and Vision Computing, 2019, 85(5):26-35.
[29]LIU Z, WU J, FU L, et al. Improved kiwifruit detection using pre-trained VGG16 with RGB and NIR information fusion[J]. IEEE Access, 2020, 8(1):2327-2336.
[30]WANG X, GU Y, GAO X, et al. Dual residual attention module network for single image super resolution[J]. Neurocomputing, 2019, 364:269-279.
[31]LIU Z, HUANG J, ZHU C, et al. Residual attention network using multi-channel dense connections for image super-resolution[J]. Applied Intelligence, 2020(1): 1-15.
[32]陶震宇,孙素芬,罗长寿. 基于Faster-RCNN的花生害虫图像识别研究[J]. 江苏农业科学,2019,47(12):247-250.
[33]邢鲲,曹俊宇,王媛媛,等. 设施蔬菜昆虫群落结构与时序动态[J].江苏农业学报,2019,35(3):564-574.
[34]梁勇,赵健,林营志,等. 基于红外传感器的实蝇类害虫实时监测装置的设计[J].江苏农业科学,2020,48(4):230-234.
[35]马林,林金盛,陆娜,等. 江浙地区秀珍菇双翅目害虫鉴定及防治[J].南方农业学报,2019,50(1):68-73.
相似文献/References:
[1]李晓振,徐岩,吴作宏,等.基于注意力神经网络的番茄叶部病害识别系统[J].江苏农业学报,2020,(03):561.[doi:doi:10.3969/j.issn.1000-4440.2020.03.005]
LI Xiao-zhen,XU Yan,WU Zuo-hong,et al.Recognition system of tomato leaf disease based on attentional neural network[J].,2020,(03):561.[doi:doi:10.3969/j.issn.1000-4440.2020.03.005]
[2]汤文亮,黄梓锋.基于知识蒸馏的轻量级番茄叶部病害识别模型[J].江苏农业学报,2021,(03):570.[doi:doi:10.3969/j.issn.1000-4440.2021.03.004]
TANG Wen-liang,HUANG Zi-feng.Lightweight model of tomato leaf diseases identification based on knowledge distillation[J].,2021,(03):570.[doi:doi:10.3969/j.issn.1000-4440.2021.03.004]
[3]李婕,李毅,张瑞杰,等.无人机遥感影像在油菜品种识别中的应用[J].江苏农业学报,2022,38(03):675.[doi:doi:10.3969/j.issn.1000-4440.2022.03.013]
LI Jie,LI Yi,ZHANG Rui-jie,et al.Application of UAV remote sensing image in rape variety identification[J].,2022,38(03):675.[doi:doi:10.3969/j.issn.1000-4440.2022.03.013]
[4]阮子行,黄勇,王梦,等.基于改进卷积神经网络的番茄品质分级方法[J].江苏农业学报,2023,(04):1005.[doi:doi:10.3969/j.issn.1000-4440.2023.04.010]
RUAN Zi-hang,HUANG Yong,WANG Meng,et al.Tomato quality grading method based on improved convolutional neural network[J].,2023,(03):1005.[doi:doi:10.3969/j.issn.1000-4440.2023.04.010]
[5]储鑫,李祥,罗斌,等.基于改进YOLOv4算法的番茄叶部病害识别方法[J].江苏农业学报,2023,(05):1199.[doi:doi:10.3969/j.issn.1000-4440.2023.05.012]
CHU Xin,LI Xiang,LUO Bin,et al.Identification method of tomato leaf diseases based on improved YOLOv4 algorithm[J].,2023,(03):1199.[doi:doi:10.3969/j.issn.1000-4440.2023.05.012]
[6]陆煜,俞经虎,朱行飞,等.基于卷积神经网络的轻量级水稻叶片病害识别模型[J].江苏农业学报,2024,(02):312.[doi:doi:10.3969/j.issn.1000-4440.2024.02.013]
LU Yu,YU Jing-hu,ZHU Xing-fei,et al.A lightweight rice leaf disease recognition model based on convolutional neural network[J].,2024,(03):312.[doi:doi:10.3969/j.issn.1000-4440.2024.02.013]
[7]王忠培,谢成军,董伟,等.基于多维间注意力机制的水稻病害识别模型[J].江苏农业学报,2024,(04):625.[doi:doi:10.3969/j.issn.1000-4440.2024.04.006]
WANG Zhong-pei,XIE Cheng-jun,DONG Wei,et al.Rice disease identification model based on multi-dimensional attention mechanism[J].,2024,(03):625.[doi:doi:10.3969/j.issn.1000-4440.2024.04.006]
[8]李仁杰,宋涛,高婕,等.基于改进YOLOv5的自然环境下番茄患病叶片检测模型[J].江苏农业学报,2024,(06):1028.[doi:doi:10.3969/j.issn.1000-4440.2024.06.009]
LI Renjie,SONG Tao,GAO Jie,et al.Tomato diseased leaf detection model based on improved YOLOv5 in natural environment[J].,2024,(03):1028.[doi:doi:10.3969/j.issn.1000-4440.2024.06.009]
[9]化春键,黄宇峰,蒋毅,等.基于改进YOLOv5s模型的田间食用玫瑰花检测方法[J].江苏农业学报,2024,(08):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]
HUA Chunjian,HUANG Yufeng,JIANG Yi,et al.Detection method of edible roses in field based on improved YOLOv5s model[J].,2024,(03):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]