[1]张善文,邵彧,齐国红,等.基于多尺度注意力卷积网络的作物害虫检测[J].江苏农业学报,2021,(03):579-588.[doi:doi:10.3969/j.issn.1000-4440.2021.03.005]
 ZHANG Shan-wen,SHAO Yu,QI Guo-hong,et al.Crop pest detection based on multi-scale convolutional network with attention[J].,2021,(03):579-588.[doi:doi:10.3969/j.issn.1000-4440.2021.03.005]
点击复制

基于多尺度注意力卷积网络的作物害虫检测()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年03期
页码:
579-588
栏目:
植物保护
出版日期:
2021-06-30

文章信息/Info

Title:
Crop pest detection based on multi-scale convolutional network with attention
作者:
张善文邵彧齐国红许新华
(郑州西亚斯学院电子信息工程学院,河南郑州451150)
Author(s):
ZHANG Shan-wenSHAO YuQI Guo-hongXU Xin-hua
(School of Electronics and Information Engineering, Zhengzhou SIAS University, Zhengzhou 451150, China)
关键词:
作物害虫检测注意力机制卷积神经网络多尺度注意力卷积网络
Keywords:
crop pest detectionattention mechanismconvolutional neural network (CNN)multi-scale convolutional neural network with attention (MSCNA)
分类号:
TP391.41;S432
DOI:
doi:10.3969/j.issn.1000-4440.2021.03.005
文献标志码:
A
摘要:
田间作物害虫检测是精确防治虫害和减少农药使用量的前提。由于田间害虫种类多,同种害虫个体间差异大,田间同一只害虫的大小、颜色、姿态、位置和背景变化多样、无规律,而且田间背景复杂、对比度低,使得传统的作物害虫检测方法的性能不高。现有的基于深度学习的作物害虫检测方法需要大量高质量的标注训练样本,而且训练时间长。在VGG16模型的基础上,本研究提出一种基于多尺度注意力卷积网络(Multi-scale convolutional network with attention, MSCNA)的作物害虫检测方法。在MSCNA中,多尺度结构和注意力模型用于提取多尺度害虫检测特征,增强对形态较小害虫的检测能力;在训练过程中引入二阶项残差模块,减少网络损失和加速网络训练。试验结果表明,该方法能较好地检测到农田中各种各样、大小不同的害虫,检测平均准确率为92.44%。说明该方法能够实现自然场景下作物害虫的精准检测,可应用于田间作物害虫自动检测。
Abstract:
Detection of crop pests in field is the prerequisite for accurate pest control and reduction of pesticide dosage. The performance of the traditional detection methods for crop pests is not high, due to the reasons such as various varieties of pests in the field, the difference between different pest individuals of the same variety is great. Besides, the size, color, posture, position and background of the same pest in the field are various and irregular, and the field background is complex and has low contrast. The existing crop pest detection methods based on deep learning require a large number of labeled training samples with high quality, and the training time is long. A multi-scale convolutional network with attention (MSCNA) method based on VGG16 model was proposed for crop pest detection. In MSCNA, the multi-scale structure and attention model were used to extract the detection features of pests on multi-scale and to enhance the ability in detecting smaller pests. Second-order term residual module was introduced in the training process to reduce network loss and accelerate network training. The experimental results showed that, the proposed method could detect various pests with different sizes in the farmland preferably, and the average detection accuracy was 92.44%. The results indicated that this method can detect crop pests accurately in natural scenes and can be applied in the automatic detection of crop pests in the field.

参考文献/References:

[1]MARTINEAU M, CONTE D, RAVEAUX R, et al. A survey on image-based insect classification [J]. Pattern Recognition, 2017, 65:273-284.
[2]YAAKOB S N, JAIN L. An insect classification analysis based on shape features using quality threshold ARTMAP and moment invariant [J]. Applied Intelligence, 2012, 37(1):12-30.
[3]FEDOR P, JAROMíR V, HAVEL J, et al. Artificial intelligence in pest insect monitoring [J]. Systematic Entomology, 2009, 34(2):398-400.
[4]WEN C, GUYER D E, LI W. Local feature-based identification and classification for orchard insects [J]. Biosystems Engineering, 2009, 104(3):299-307.
[5]WEN C, GUYER D. Image-based orchard insect automated identification and classification method [J]. Computers & Electronics in Agriculture, 2012, 89:110-115.
[6]BOISSARD P, MARTIN V, MOISAN S. A cognitive vision approach to early pest detection in greenhouse crops[J]. Computers & Electronics in Agriculture, 2008, 62(2):81-93.
[7]ZHU L Q, ZHANG Z. Automatic insect classification based on local mean colour feature and supported vector machines [J]. Oriental Insects, 2012, 46(3/4):260-269.
[8]FINA F, BIRCH P, YOUNG R, et al. Automatic plant pest detection and recognition using k-means clustering algorithm and correspondence filters [J]. International Journal of advanced Biotechnology & Research, 2013, 4:189-199.
[9]JAYME G A. Using digital image processing for counting whiteflies on soybean leaves [J]. Journal of Asia Pacific Entomology, 2014,17 (4):685-694.
[10]XIE C, ZHANG J, LI R, et al. Automatic classification for field crop insects via multiple-task sparse representation and multiple-kernel learning [J]. Computers & Electronics in Agriculture, 2015, 119:123-132.
[11]ZHANG H T, HU Y X, ZHANG H Y. Extraction and classifier design for image recognition of insect pests on field crops [J]. Advanced Materials Research, 2013(756/759):4063-4067.
[12]EBRAHIMI M A, KHOSHTAGHAZA M H, MINAEI S, et al. Vision-based pest detection based on SVM classification method [J]. Computers & Electronics in Agriculture, 2017, 137:52-58.
[13]WANG Z B, WANG K Y, LIU Z Q, et al. A cognitive vision method for insect pest image segmentation [J]. IFAC-Papers On Line, 2018, 15(17): 85-89.
[14]周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报, 2017,40(6): 1229-1251.
[15]BERNAL J, KUSHIBAR K, ASFAW D S, et al. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review[J]. Artificial Intelligence in Medicine, 2019, 95:64-81.
[16]TRKOLU M, HANBAY D. Plant disease and pest detection using deep learning-based features [J]. Turkish Journal of Electrical Engineering and Computer, 2019, 27(3):1636-1651.
[17]BHATT N, PATEL D. Insect identification among deep learning’s meta-architectures using tensorflow [J]. International Journal of Engineering and Advanced Technology, 2019,9(1):1910-1914
[18]NANNI L, MAGUOLO G, PANCINO F. Insect pest image detection and recognition based on bio-inspired methods [J].Ecological Informatics, 2020, 57:101089.
[19]WITENBERG S R, ADAO N A, D′IBIO L B. A deep learning model for recognition of pest insects in maize plantations [C]//FANTI M P,ZHOU M C. IEEE International Conference on Systems, Man and Cybernetics (SMC).Bari Italy:IEEE Press,2019.
[20]XIA D, CHEN P, WANG B. Insect detection and classification based on an improved convolutional neural network[J]. Sensors, 2018, 18(12):4169.
[21]LIU L, WANG R, XIE C, et al. Pestnet: an end-to-end deep learning approach for large-scale multi-class pest detection and classification [J]. IEEE Access, 2019, 7:45301-45312.
[22]钱蓉,孔娟娟,朱静波,等. 基于VGG-16卷积神经网络的水稻害虫智能识别研究[J]. 安徽农业科学, 2020, 48(5):235-238.
[23]徐诚极,王晓峰,杨亚东. Attention-YOLO:引入注意力机制的YOLO检测算法[J]. 计算机工程与应用, 2019, 55(6):19-29,131.
[24]BARROS P, PARISI G I, WEBER C, et al. Emotion-modulated attention improves expression recognition: a deep learning model[J]. Neurocomputing, 2017, 253(30):104-114.
[25]梁斌,刘全,徐进.基于多注意力卷积神经网络的特定目标情感分析[J]. 计算机研究与发展,2017,54(8): 1724-1735.
[26]乐毅,王文宇,张凯,等.基于多层注意力机制的农业病虫害远程监督关系抽取研究[J]. 安徽农业大学学报,2020,47 (4):189-193.
[27]孙皓泽,常天庆,王全东,等.一种基于分层多尺度卷积特征提取的坦克装甲目标图像检测方法[J]. 兵工学报, 2017(9):1681-1691.
[28]MUSTAFA H T, YANG J, ZAREAPOOR M. Multi-scale convolutional neural network for multi-focus image fusion [J]. Image and Vision Computing, 2019, 85(5):26-35.
[29]LIU Z, WU J, FU L, et al. Improved kiwifruit detection using pre-trained VGG16 with RGB and NIR information fusion[J]. IEEE Access, 2020, 8(1):2327-2336.
[30]WANG X, GU Y, GAO X, et al. Dual residual attention module network for single image super resolution[J]. Neurocomputing, 2019, 364:269-279.
[31]LIU Z, HUANG J, ZHU C, et al. Residual attention network using multi-channel dense connections for image super-resolution[J]. Applied Intelligence, 2020(1): 1-15.
[32]陶震宇,孙素芬,罗长寿. 基于Faster-RCNN的花生害虫图像识别研究[J]. 江苏农业科学,2019,47(12):247-250.
[33]邢鲲,曹俊宇,王媛媛,等. 设施蔬菜昆虫群落结构与时序动态[J].江苏农业学报,2019,35(3):564-574.
[34]梁勇,赵健,林营志,等. 基于红外传感器的实蝇类害虫实时监测装置的设计[J].江苏农业科学,2020,48(4):230-234.
[35]马林,林金盛,陆娜,等. 江浙地区秀珍菇双翅目害虫鉴定及防治[J].南方农业学报,2019,50(1):68-73.

相似文献/References:

[1]李晓振,徐岩,吴作宏,等.基于注意力神经网络的番茄叶部病害识别系统[J].江苏农业学报,2020,(03):561.[doi:doi:10.3969/j.issn.1000-4440.2020.03.005]
 LI Xiao-zhen,XU Yan,WU Zuo-hong,et al.Recognition system of tomato leaf disease based on attentional neural network[J].,2020,(03):561.[doi:doi:10.3969/j.issn.1000-4440.2020.03.005]
[2]汤文亮,黄梓锋.基于知识蒸馏的轻量级番茄叶部病害识别模型[J].江苏农业学报,2021,(03):570.[doi:doi:10.3969/j.issn.1000-4440.2021.03.004]
 TANG Wen-liang,HUANG Zi-feng.Lightweight model of tomato leaf diseases identification based on knowledge distillation[J].,2021,(03):570.[doi:doi:10.3969/j.issn.1000-4440.2021.03.004]
[3]李婕,李毅,张瑞杰,等.无人机遥感影像在油菜品种识别中的应用[J].江苏农业学报,2022,38(03):675.[doi:doi:10.3969/j.issn.1000-4440.2022.03.013]
 LI Jie,LI Yi,ZHANG Rui-jie,et al.Application of UAV remote sensing image in rape variety identification[J].,2022,38(03):675.[doi:doi:10.3969/j.issn.1000-4440.2022.03.013]
[4]阮子行,黄勇,王梦,等.基于改进卷积神经网络的番茄品质分级方法[J].江苏农业学报,2023,(04):1005.[doi:doi:10.3969/j.issn.1000-4440.2023.04.010]
 RUAN Zi-hang,HUANG Yong,WANG Meng,et al.Tomato quality grading method based on improved convolutional neural network[J].,2023,(03):1005.[doi:doi:10.3969/j.issn.1000-4440.2023.04.010]
[5]储鑫,李祥,罗斌,等.基于改进YOLOv4算法的番茄叶部病害识别方法[J].江苏农业学报,2023,(05):1199.[doi:doi:10.3969/j.issn.1000-4440.2023.05.012]
 CHU Xin,LI Xiang,LUO Bin,et al.Identification method of tomato leaf diseases based on improved YOLOv4 algorithm[J].,2023,(03):1199.[doi:doi:10.3969/j.issn.1000-4440.2023.05.012]
[6]陆煜,俞经虎,朱行飞,等.基于卷积神经网络的轻量级水稻叶片病害识别模型[J].江苏农业学报,2024,(02):312.[doi:doi:10.3969/j.issn.1000-4440.2024.02.013]
 LU Yu,YU Jing-hu,ZHU Xing-fei,et al.A lightweight rice leaf disease recognition model based on convolutional neural network[J].,2024,(03):312.[doi:doi:10.3969/j.issn.1000-4440.2024.02.013]
[7]王忠培,谢成军,董伟,等.基于多维间注意力机制的水稻病害识别模型[J].江苏农业学报,2024,(04):625.[doi:doi:10.3969/j.issn.1000-4440.2024.04.006]
 WANG Zhong-pei,XIE Cheng-jun,DONG Wei,et al.Rice disease identification model based on multi-dimensional attention mechanism[J].,2024,(03):625.[doi:doi:10.3969/j.issn.1000-4440.2024.04.006]
[8]李仁杰,宋涛,高婕,等.基于改进YOLOv5的自然环境下番茄患病叶片检测模型[J].江苏农业学报,2024,(06):1028.[doi:doi:10.3969/j.issn.1000-4440.2024.06.009]
 LI Renjie,SONG Tao,GAO Jie,et al.Tomato diseased leaf detection model based on improved YOLOv5 in natural environment[J].,2024,(03):1028.[doi:doi:10.3969/j.issn.1000-4440.2024.06.009]
[9]化春键,黄宇峰,蒋毅,等.基于改进YOLOv5s模型的田间食用玫瑰花检测方法[J].江苏农业学报,2024,(08):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]
 HUA Chunjian,HUANG Yufeng,JIANG Yi,et al.Detection method of edible roses in field based on improved YOLOv5s model[J].,2024,(03):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]

备注/Memo

备注/Memo:
收稿日期:2020-09-19基金项目:国家自然科学基金项目(61473237);河南省科技攻关项目(202102210157、202102210386、202102110278)作者简介:张善文(1965-),男,陕西西安人,博士,教授,研究方向为模式识别及其在作物病虫害检测中的应用。(E-mail)wjdw716@163.com
更新日期/Last Update: 2021-07-05