参考文献/References:
[1]吴琼,梁巧兰,张娜. 番茄主要病害病原菌培养条件及室内药剂筛选[J]. 甘肃农业大学学报, 2018, 53(5):79-86.
[2]谭海文,吴永琼,秦莉,等. 我国番茄侵染性病害种类变迁及其发生概况[J]. 中国蔬菜, 2019, 359(1):86-90.
[3]贾少鹏,高红菊,杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J].农业机械学报, 2019,50(增刊1):313-317.
[4]李颀,王康,强华,等. 基于颜色和纹理特征的异常玉米种穗分类识别方法[J].江苏农业学报, 2020,36(1):24-31.
[5]张经纬,贡亮,黄亦翔,等. 基于随机森林算法的黄瓜种子腔图像分割方法[J].农机化研究, 2017,39(10): 163-168.
[6]GINNE M, PUNITHA S C. Tomato disease segmentation using K-means clustering[J]. International Journal of Computer Applications, 2016, 144(5):25-29.
[7]GUO Y, LIU Y, OERLEMANS A, et al. Deep learning for visual understanding: a review[J]. Neurocomputing, 2016, 187(26):27-48.
[8]LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436.
[9]周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报, 2017,40(6):1229-1251.
[10]赵立新,侯发东,吕正超,等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7):184-191.
[11]黄双萍,孙超,齐龙,等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报, 2017, 33(20):169-176.
[12]许景辉,邵明烨,王一琛,等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 25.
[13]龙满生,欧阳春娟,刘欢,等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18):194-201.
[14]PRABHAKAR M, PURUSHOTHAMAN R, AWASTHI D P. Deep learning based assessment of disease severity for early blight in tomato crop[J]. Multimedia Tools and Applications, 2020,79: 1-12.
[15]MOHANTY S P, HUGHES D P, SALATH M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016, 7:1419.
[16]郭小清,范涛杰,舒欣. 基于改进Multi-Scale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019(13):162-169.
[17]YANG B, BENDER G, LE Q V, et al. Condconv: conditionally parameterized convolutions for efficient inference[C]//SCHLKOPF B, PLATT J, HOFMANN T. Advances in Neural Information Processing Systems. Vancouver, Canada:2019:1307-1318.
[18]HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42: 2011-202399.
[19]HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. Computer Science, 2015, 14(7):38-39.
[20]SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2019, 128(8): 336-359.
[21]HUGHES D, SALATH M. An open access repository of images on plant health to enable the development of mobile disease diagnostics[EB/OL].(2015-11-25)
[2020-09-01]. https: //arxiv.org/abs/1511. 08060.
[22]SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Boston, MA:IEEE, 2015: 1-9.
[23]XIE S, GIRSHICK R, DOLLR P, et al. Aggregated residual transformations for deep neural networks[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. New York:IEEE Press, 2017: 1492-1500.
[24]RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
[25]KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
[26]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL].(2014-09-04)
[2020-09-01].https://arxiv.org/abs/1712.031497.
[27]HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. New York: IEEE Press, 2016: 770-778.
[28]HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. New York:IEEE Press, 2017: 4700-4708.
[29]李懿超,沈润平,黄安奇. 基于深度学习的湘赣鄂地区植被变化及其影响因子关系模型[J]. 江苏农业科学,2019,47(3):213-218.