[1]任妮,鲍彤,刘杨,等.基于粒子群优化算法和长短时记忆神经网络的蟹塘溶解氧预测[J].江苏农业学报,2021,(02):426-434.[doi:doi:10.3969/j.issn.1000-4440.2021.02.020]
 REN Ni,BAO Tong,LIU Yang,et al.Prediction model of dissolved oxygen in Chinese mitten crab ponds based on particle swarm optimization algorithm and long short-term memory neural networks[J].,2021,(02):426-434.[doi:doi:10.3969/j.issn.1000-4440.2021.02.020]
点击复制

基于粒子群优化算法和长短时记忆神经网络的蟹塘溶解氧预测()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年02期
页码:
426-434
栏目:
畜牧兽医·水产养殖
出版日期:
2021-04-30

文章信息/Info

Title:
Prediction model of dissolved oxygen in Chinese mitten crab ponds based on particle swarm optimization algorithm and long short-term memory neural networks
作者:
任妮1鲍彤1刘杨1荀广连1蒋永年2
(1.江苏省农业科学院农业信息研究所,江苏南京210014;2.江苏中农物联网科技有限公司,江苏宜兴214200)
Author(s):
REN Ni1BAO Tong1LIU Yang1XUN Guang-lian1JIANG Yong-nian2
(1.Institute of Agricultural Information,Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Jiangsu Zhongnong Internet of Things Technology Co., Ltd., Yixing 214200,China)
关键词:
溶解氧预测河蟹养殖粒子群优化算法长短时记忆神经网络
Keywords:
prediction of dissolved oxygenculturing of Chinese mitten crabparticle swarm optimization algorithmlong short-term memory neural networks
分类号:
S126
DOI:
doi:10.3969/j.issn.1000-4440.2021.02.020
文献标志码:
A
摘要:
为准确预测蟹塘溶解氧质量浓度,及时掌握溶解氧质量浓度的变化趋势,提前采取防控措施从而降低河蟹养殖风险,提出了一种基于粒子群优化算法(PSO)和长短时记忆神经网络(LSTM)的蟹塘溶解氧质量浓度预测模型,采用PSO算法优化LSTM模型参数后对蟹塘溶解氧质量浓度进行预测。结果表明,PSO-LSTM模型不仅整体优于ARIMA模型,相较于其他LSTM模型也有更高的预测精度,在连续10个时间点的预测中相比于LDO-LSTM、LSTM和ARIMA模型平均百分误差分别降低了2.55%、1.891%和4.055%。说明PSO-LSTM模型在蟹塘溶解氧质量浓度预测中具有良好的准确性和稳定性,可以为河蟹养殖中水质精准预测与调控提供参考。
Abstract:
To predict the mass concentration of dissolved oxygen in Chinese mitten crab ponds accurately, grasp the changing trend of the mass concentration of dissolved oxygen timely and take preventive and control measures in advance to reduce the risk in Chinese mitten crab culturing, a model for predicting the mass concentration of dissolved oxygen in Chinese mitten crab ponds based on particle swarm optimization (PSO) and long short-term memory (LSTM) neural networks was proposed. The mass concentration of dissolved oxygen in Chinese mitten crab ponds was predicted after optimizing LSTM model parameters by PSO algorithm. The results showed that the PSO-LSTM model was not only superior to the ARIMA model, but also had higher prediction accuracy compared with other LSTM models. In the predictions at 10 consecutive time points, the average percentage error of the PSO-LSTM model reduced by 2.55%, 1.891% and 4.055% respectively, compared with the LDO-LSTM, LSTM and ARIMA models. It can be seen that the PSO-LSTM model has good accuracy and stability in the prediction of the mass concentration of dissolved oxygen in Chinese mitten crab ponds, and can provide a reference for accurate prediction and regulation of water quality in Chinese mitten crab culturing.

参考文献/References:

[1]刘双印,徐龙琴,李道亮,等. 基于蚁群优化最小二乘支持向量回归机的河蟹养殖溶解氧预测模型[J].农业工程学报,2012,28(23):167-175.
[2]宦娟,刘星桥. 基于K-means聚类和ELM神经网络的养殖水质溶解氧预测[J].农业工程学报,2016,32(17):174-181.
[3]KHAN V C. Comparing A Bayesian and fuzzy number approach to uncertainty quantification in short-term dissolved oxygen prediction[J]. Journal of Environmental Informatics, 2017, 30(1):1-16.
[4]吴慧英,杨日剑,张颖,等. 基于PCA-SVR的池塘DO预测模型[J].安徽大学学报(自然科学版),2016,40(6):103-108.
[5]BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166.
[6]杨丽,吴雨茜,王俊丽,等. 循环神经网络研究综述[J].计算机应用,2018,38(S2):1-6,26.
[7]HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[8]温惠英,张东冉,陆思园. GA-LSTM模型在高速公路交通流预测中的应用[J].哈尔滨工业大学学报,2019,51(9):81-87,95.
[9]白盛楠,申晓留. 基于LSTM循环神经网络的PM_(2.5)预测[J].计算机应用与软件,2019,36(1):67-70,104.
[10]魏昱洲,许西宁. 基于LSTM长短期记忆网络的超短期风速预测[J].电子测量与仪器学报,2019,33(2):64-71.
[11]LIU S Y, XU L Q, LI D L. Prediction of dissolved oxygen content in river crab culture based on least squares support vector regression optimized by improved particle swarm optimization[J]. Computers and Electronics in Agriculture, 2013, 95:82-91.
[12]TA X X, WEI Y G. Research on a dissolved oxygen prediction method for recirculating aquaculture systems based on a convolution neural network[J]. Computers and Electronics in Agriculture, 2018, 145: 302-310.
[13]LIU Y Q,ZHANG Q,SONG L H. Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction[J]. Computers and Electronics in Agriculture,2019,165:1-11.
[14]朱南阳,吴昊,尹达恒,等. 基于长短时记忆网络(LSTM)的蟹塘溶解氧估算优化方法[J].智慧农业,2019,1(3):67-76.
[15]陈英义,程倩倩,方晓敏,等. 主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧[J].农业工程学报,2018,34(17):183-191.
[16]杨孟达. 基于改进PSO-LSTM神经网络的气温预测[J].现代信息科技,2020,4(4):110-112.
[17]刘可真,苟家萁,骆钊,等. 基于PSO-LSTM模型的变压器油中溶解气体浓度预测方法[J]. 电网技术,2020,44(7):2778-2785.
[18]李万,冯芬玲,蒋琦玮. 改进粒子群算法优化LSTM神经网络的铁路客运量预测[J].铁道科学与工程学报,2018,15(12):3274-3280.
[19]宋刚,张云峰,包芳勋,等. 基于粒子群优化LSTM的股票预测模型[J].北京航空航天大学学报,2019,45(12):2533-2542.
[20]李爱国,覃征,鲍复民,等. 粒子群优化算法[J].计算机工程与应用,2002(21):1-3,17.

相似文献/References:

[1]冯国富,卢胜涛,陈明,等.基于自注意力机制和改进的K-BiLSTM的水产养殖水体溶解氧含量预测模型[J].江苏农业学报,2024,(03):490.[doi:doi:10.3969/j.issn.1000-4440.2024.03.011]
 FENG Guo-fu,LU Sheng-tao,CHEN Ming,et al.Prediction model of dissolved oxygen content in aquaculture water based on self-attention mechanism and improved K-BiLSTM[J].,2024,(02):490.[doi:doi:10.3969/j.issn.1000-4440.2024.03.011]

备注/Memo

备注/Memo:
收稿日期:2020-09-14基金项目:江苏省农业科技自主创新基金项目[CX(19)1003]作者简介:任妮(1983-),女,山东莱州人,博士,副研究员,研究方向为大数据分析和知识组织等。(E-mail)rn@jaas.ac.cn
更新日期/Last Update: 2021-05-10