参考文献/References:
[1]刘双印,徐龙琴,李道亮,等. 基于蚁群优化最小二乘支持向量回归机的河蟹养殖溶解氧预测模型[J].农业工程学报,2012,28(23):167-175.
[2]宦娟,刘星桥. 基于K-means聚类和ELM神经网络的养殖水质溶解氧预测[J].农业工程学报,2016,32(17):174-181.
[3]KHAN V C. Comparing A Bayesian and fuzzy number approach to uncertainty quantification in short-term dissolved oxygen prediction[J]. Journal of Environmental Informatics, 2017, 30(1):1-16.
[4]吴慧英,杨日剑,张颖,等. 基于PCA-SVR的池塘DO预测模型[J].安徽大学学报(自然科学版),2016,40(6):103-108.
[5]BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166.
[6]杨丽,吴雨茜,王俊丽,等. 循环神经网络研究综述[J].计算机应用,2018,38(S2):1-6,26.
[7]HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[8]温惠英,张东冉,陆思园. GA-LSTM模型在高速公路交通流预测中的应用[J].哈尔滨工业大学学报,2019,51(9):81-87,95.
[9]白盛楠,申晓留. 基于LSTM循环神经网络的PM_(2.5)预测[J].计算机应用与软件,2019,36(1):67-70,104.
[10]魏昱洲,许西宁. 基于LSTM长短期记忆网络的超短期风速预测[J].电子测量与仪器学报,2019,33(2):64-71.
[11]LIU S Y, XU L Q, LI D L. Prediction of dissolved oxygen content in river crab culture based on least squares support vector regression optimized by improved particle swarm optimization[J]. Computers and Electronics in Agriculture, 2013, 95:82-91.
[12]TA X X, WEI Y G. Research on a dissolved oxygen prediction method for recirculating aquaculture systems based on a convolution neural network[J]. Computers and Electronics in Agriculture, 2018, 145: 302-310.
[13]LIU Y Q,ZHANG Q,SONG L H. Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction[J]. Computers and Electronics in Agriculture,2019,165:1-11.
[14]朱南阳,吴昊,尹达恒,等. 基于长短时记忆网络(LSTM)的蟹塘溶解氧估算优化方法[J].智慧农业,2019,1(3):67-76.
[15]陈英义,程倩倩,方晓敏,等. 主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧[J].农业工程学报,2018,34(17):183-191.
[16]杨孟达. 基于改进PSO-LSTM神经网络的气温预测[J].现代信息科技,2020,4(4):110-112.
[17]刘可真,苟家萁,骆钊,等. 基于PSO-LSTM模型的变压器油中溶解气体浓度预测方法[J]. 电网技术,2020,44(7):2778-2785.
[18]李万,冯芬玲,蒋琦玮. 改进粒子群算法优化LSTM神经网络的铁路客运量预测[J].铁道科学与工程学报,2018,15(12):3274-3280.
[19]宋刚,张云峰,包芳勋,等. 基于粒子群优化LSTM的股票预测模型[J].北京航空航天大学学报,2019,45(12):2533-2542.
[20]李爱国,覃征,鲍复民,等. 粒子群优化算法[J].计算机工程与应用,2002(21):1-3,17.