[1]赵强强,陈财,张菲菲,等.淮河流域冬小麦干旱时空分布特征[J].江苏农业学报,2021,(02):373-381.[doi:doi:10.3969/j.issn.1000-4440.2021.02.013]
 ZHAO Qiang-qiang,CHEN Cai,ZHANG Fei-fei,et al.Spatial and temporal distribution characteristics of drought of winter wheat in Huai River Basin[J].,2021,(02):373-381.[doi:doi:10.3969/j.issn.1000-4440.2021.02.013]
点击复制

淮河流域冬小麦干旱时空分布特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年02期
页码:
373-381
栏目:
耕作栽培·资源环境
出版日期:
2021-04-30

文章信息/Info

Title:
Spatial and temporal distribution characteristics of drought of winter wheat in Huai River Basin
作者:
赵强强陈财张菲菲高超
(宁波大学地理与空间信息技术系,浙江宁波315211)
Author(s):
ZHAO Qiang-qiangCHEN CaiZHANG Fei-feiGAO Chao
(Department of Geography and Spatial Information Technology, Ningbo University, Ningbo 315211, China)
关键词:
气象干旱冬小麦农业干旱淮河流域温度植被干旱指数(TVDI)标准化降水指数(SPI)
Keywords:
meteorological droughtagricultural drought of winter wheatHuai River Basintemperature vegetation drought index(TVDI)standardized precipitation index(SPI)
分类号:
S423
DOI:
doi:10.3969/j.issn.1000-4440.2021.02.013
文献标志码:
A
摘要:
基于1961-2016年140个气象站点的日尺度降水数据和月尺度地表温度(LST)、归一化植被指数(NDVI),利用标准化降水指数(SPI)和温度植被干旱指数(TVDI)分别表征淮河流域气象干旱和农业干旱,分析淮河流域冬小麦气象干旱和农业干旱时空变化特征。结果显示:(1)气象干旱时空变化特征:冬前生长期和灌浆成熟期降水量呈上升趋势,越冬期和返青抽穗期呈下降趋势;轻度干旱以上占比表现为:冬前生长期>返青抽穗期>灌浆成熟期>越冬期。(2)农业干旱时空变化特征:时间上,轻度干旱以上占比在越冬期和返青抽穗期呈上升趋势;空间上,冬前生长期轻度干旱以上占比明显高于返青抽穗期和灌浆成熟期,因此有利于冬小麦的生长发育。(3)农业干旱与气象干旱异同性:时滞性,冬前生长期、越冬期和返青抽穗期,TVDI表征的农业干旱较SPI表征的气象干旱时滞小于1个月;灌浆成熟期,TVDI表征的农业干旱较SPI表征的气象干旱时滞1至2个月;空间上,在冬前生长期二者轻度干旱占比差异主要位于东部沿海地区,在返青抽穗期和灌浆成熟期二者轻度干旱占比差异主要位于高海拔地区。而且,从TVDI表征的农业干旱与SPI表征的气象干旱的轻度干旱占比空间分布来看,农业干旱比气象干旱强度大。
Abstract:
Based on the daily precipitation data, the monthly surface temperature (LST) and normalized difference vegetation index (NDVI) of 140 meteorological stations from 1961 to 2016, the standardized precipitation index (SPI) and the temperature vegetation drought index (TVDI) were used to characterize the meteorological drought and agricultural drought in Huai River Basin to analyze the temporal and spatial variation characteristics of meteorological drought and agricultural drought of winter wheat. The results showed that, firstly, on the aspect of temporal and spatial variation characteristics of meteorological drought, the precipitation increased in the growth period and filling maturity period before winter, decreased in overwintering period and turning green-heading stage. The proportion of drought above mild showed the following order: pre-winter growth period > returning green-heading stage > filling maturity stage > overwintering stage. Secondly, on the aspect of temporal and spatial variation characteristics of agricultural drought, drought above mild showed an upward trend in overwintering period and returning green-heading stage on the time scale, the proportion of drought above light in the growth period pre-winter was significantly higher than that in returning green-heading stage and filling maturity stage on the space scale, so it was beneficial to the growth and development of winter wheat. Thirdly, on the aspect of the similarities and differences between agricultural drought and meteorological drought, the agricultural drought represented by TVDI was one month less than the meteorological drought represented by SPI during the pre-winter growth period, overwintering period and returning green-heading period in the comparison of time lag. At the stage of filling maturity, the agricultural drought represented by TVDI lagged about one to two months compared with the meteorological drought represented by SPI. On the spatial scale, the proportion difference of mild drought represented by TVDI and SPI mainly located in the eastern coastal area during the pre-winter growth period, and the proportion difference of the mild drought represented by TVDI and SPI in the periods of returning green-heading and filling maturity mainly located in the high altitude area. Moreover, from the aspect of the spatial distribution of agricultural drought characterized by TVDI and meteorological drought characterized by SPI, the intensity of agricultural drought was higher than that of meteorological drought.

参考文献/References:

[1]BENISTON M, Stephenson D B. Extreme climatic events and their evolution under changing climatic conditions [J]. Global and Planetary Change, 2004, 44(1-4):1-9.
[2]苗茜,曾燕,谢志清,等. 1961-2007年淮河流域热量资源变化趋势 [J]. 江苏农业学报, 2013, 29(3): 548-554.
[3]康凌艳,芦清水,邵宏波,等. 干旱对滨州灌区冬小麦归一化植被指数(NDVI)的影响 [J]. 江苏农业学报, 2017, 33(1): 87-93.
[4]HUANG S Z, CHANG J X, HUANG Q, et al. Spatio-temporal changes and frequency analysis of drought in the Wei River Basin, China [J]. Water Resource Manage, 2014, 28 (10): 3095-3110.
[5]孙荣强. 干旱定义及其指标述评 [J]. 灾害学, 1994, 9(1): 17-21.
[6]姚玉璧,张存杰,邓振镛,等. 气象、农业干旱指标综述 [J]. 干旱地区农业研究, 2007(1): 185-189,211.
[7]王春林,陈慧华,唐力生,等. 基于前期降水指数的气象干旱指标及其应用 [J]. 气候变化研究进展, 2012, 8(3): 157-163.
[8]史建国,严昌荣,何文清,等. 气象干旱指数计算方法研究概述 [J]. 中国农业气象, 2007, 28(增): 19-195.
[9]强皓凡,靳晓言,赵璐,等. 基于相对湿润度指数的近56年若尔盖湿地干湿变化 [J]. 水土保持研究, 2018, 25(1): 172-177,182.
[10]曹雯,成林,杨太明,等. 河南省冬小麦拔节-抽穗期干旱天气指数保险研究 [J].气象, 2019, 45(2): 274-281.
[11]杨志勇,袁喆,严登华,等. 黄淮海流域旱涝时空分布及组合特性 [J]. 水科学进展, 2013(5):617-625.
[12]贾建英,韩兰英,万信. 甘肃省冬小麦水分盈亏指数的改进及其应用 [J]. 中国生态农业学报, 2018, 26(4): 559-566.
[13]王文静,延军平,刘永林,等. 基于综合气象干旱指数的海河流域干旱特征分析 [J]. 干旱区地理, 2016, 39(2): 336-344.
[14]张调风,张勃,王有恒,等. 基于综合气象干旱指数的石羊河流域近50年气象干旱特征分析 [J]. 生态学报, 2013, 33(3): 975-984.
[15]王连喜,胡海玲,李琪,等. 基于水分亏缺指数的陕西冬小麦干旱特征分析[J]. 干旱地区农业研究, 2015(5): 237-244.
[16]董秋婷,李茂松,刘江,等. 近50年东北地区春玉米的时空演变特征 [J]. 自然灾害学报,2011, 20(4): 52-59.
[17]JACKSON R D, IDSO S B. Canopy temperature as a crop water stress indicator [J]. Water Resources Research, 1981, 17:1133-1138.
[18]程伟,辛晓平. 基于TVDI的内蒙古草地干旱变化特征分析 [J]. 中国农业科学, 2020, 53(13): 2728-2742.
[19]郑宁,严平,孙秀邦,等. 基于NOAA/AVHRR卫星数据的淮北地区干旱监测 [J]. 中国农学通报, 2009, 25(1): 256-259.
[20]王鹏新,龚健雅,李小文,等. 基于植被指数和土地表面温度的干旱监测模型 [J]. 地球科学进展, 2003(4): 527-533.
[21]汪左,王芳,张运. 基于CWSI的安徽省干旱时空特征及影响因素分析 [J]. 自然资源学报, 2018, 33(5): 853-866.
[22]高超,尹周祥,许莹. 淮河流域冬小麦主要生育期旱涝时空特征及对产量的影响 [J]. 农业工程学报, 2017, 33(22): 103-111.
[23]高超,张正涛,刘青,等. 承灾体脆弱性评估指标的最优格网化方法——以淮河干流区暴雨洪涝灾害为例 [J]. 自然灾害学报, 2018, 27(3): 119-129.
[24]尹周祥,高超,李学文,等. 淮河上游冬小麦生长关键期旱涝灾害阈值研究 [J]. 灌溉排水学报, 2017, 36(7): 100-107.
[25]GAO C, LI X W , SUN Y W, et al. Water requirement of summer maize at different growth stages and the spatiotemporal characteristics of agricultural drought in the Huaihe River Basin, China [J]. Theoretical and Applied Climatology, 2018 (10) :1-14.
[26]王兆礼,黄泽勤,李军,等. 基于SPEI和NDVI的中国流域尺度气象干旱及植被分布时空演变 [J]. 农业工程学报, 2016, 32(14): 177-186.
[27]GAO C, LI X W. Precipitation thresholds of drought disaster for maize in areas in front of Bengbu Sluice, Huaihe River Basin, China [J]. Water, 2018, 10(10): 1-18.
[28]中华人民共和国质量监督检验检疫总局,中华人民共和国标准化委员会. 气象干旱等级: GB/T 32136-2015[S]. 北京: 中国标准出版社, 2015 : 1-21.
[29]刘宗元,张建平,罗红霞,等. 基于农业干旱参考指数的西南地区玉米干旱时空变化分析 [J]. 农业工程学报, 2014, 30(2): 105-115.
[30]谷鑫鑫,司剑华,卢素锦,等.黄河源区历史时期干湿变化特征分析[J].江苏农业科学,2019,47(23):307-312.
[31]EL-MAGD I, TANTON T W. Improvements in land use mapping for irrigated agriculture from satellite sensor data using a multi-stage maximum likelihood classification [J]. International Journal of Remote Sensing, 2003,24(21): 4197-4206.
[32]范嘉智,谭诗琪,罗宇,等.湖南省最适干旱指数研究及近50年干旱演变分析[J].江苏农业科学,2019,47(15):291-295,306.
[33]罗登泽,靳晓言,强皓凡,等. 基于SPEI的若尔盖湿地干湿时空演变特征分析[J]. 水土保持研究, 2019, 26(2): 227-233.
[34]刘宪锋,朱秀芳,潘耀忠,等. 农业干旱监测研究进展与展望 [J]. 地理学报, 2015, 70(11): 1835-1848.
[35]李艳利. 基于气象数据和LST-NDVI特征空间的吉林省干旱时空分析 [D]. 长春:东北师范大学, 2015.
[36]许莹,马晓群,王晓东,等. 淮河流域冬小麦水分亏缺时空变化特征分析 [J]. 地理科学, 2013, 33(9): 1138-1144.

备注/Memo

备注/Memo:
收稿日期:2020-08-25基金项目:国家自然科学基金项目(41871024)作者简介:赵强强(1994-),男,河南三门峡人,硕士研究生,主要从事气候变化与水文水资源研究。(E-mail)zhaoqiangqiangnb@163.com通讯作者:高超,(E-mail)gaoqinchao1@163.com
更新日期/Last Update: 2021-05-10