[1]方瑶,谢天铧,郭渭,等.基于近红外光谱的金鲳鱼新鲜度快速检测技术[J].江苏农业学报,2021,(01):213-218.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
 FANG Yao,XIE Tian-hua,GUO Wei,et al.Rapid detection technology of pomfret freshness based on near infrared spectroscopy[J].,2021,(01):213-218.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
点击复制

基于近红外光谱的金鲳鱼新鲜度快速检测技术()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年01期
页码:
213-218
栏目:
加工贮藏·质量安全
出版日期:
2021-02-28

文章信息/Info

Title:
Rapid detection technology of pomfret freshness based on near infrared spectroscopy
作者:
方瑶1谢天铧2郭渭1白雪冰1李振波1李鑫星1
(1.中国农业大学信息与电气工程学院,北京100083;2.中国农业大学工学院,北京100083)
Author(s):
FANG Yao1XIE Tian-hua2GUO Wei1BAI Xue-bing1LI Zhen-bo1LI Xin-xing1
(1.College of Information and Electrical Engineering, China Agricutural University, Beijing 100083, China;2.College of Engineering, China Agricultural University, Beijing 100083, China)
关键词:
近红外光谱新鲜度金鲳鱼挥发性盐基氮偏最小二乘法多元散射校正
Keywords:
near infrared spectroscopyfreshnesspomfrettotal volatile basic nitrogenpartial least squaresmultiplicative scatter correction
分类号:
O657.3
DOI:
doi:10.3969/j.issn.1000-4440.2021.01.028
文献标志码:
A
摘要:
挥发性盐基氮(Total volatile basic nitrogen,TVB-N)是动物性食品的新鲜度指标。传统的TVB-N检测技术工序繁杂,对鱼肉具有不可逆的破坏性。本研究拟用近红外光谱技术进行金鲳鱼肉质新鲜度的检测,采用一阶微分(1st Der)、二阶微分(2nd Der)、多元散射校正(Multiplicative scatter correction , MSC)、标准正态变换(Standard normal variate transform,SNV)对金鲳鱼鱼肉的近红外光谱数据进行预处理,通过比较预测结果,确定多元散射校正为最优预处理方法。分别采用偏最小二乘法(PLS)和主成分回归法(PCR)建立金鲳鱼鱼肉TVB-N的预测模型,最终确立了基于MSC和PLS的最佳模型,其中预测集均方根误差(RMSEP)为1.845 4,决定系数(R2)为0.884 1。由研究结果看出,基于近红外光谱建立的金鲳鱼肉质预测模型具有较高的精度,可为快速检测金鲳鱼的肉质新鲜度提供理论依据。
Abstract:
The total volatile basic nitrogen (TVB-N) is the freshness index of animal food. The traditional TVB-N detection technology is complicated and has irreversible damage to fish. In this study, near-infrared spectroscopy was used to detect the meat freshness of pomfret. The first order differential (1st Der), second order differential (2nd Der), standard normal variate transform(SNV), multiplicative scatter correction (MSC) were used to preprocess the near infrared spectrum data. The MSC was determined as the optimal pretreatment method by comparing the predicted results. Partial least squares(PLS) and principal component regression(PCR) were used to establish the TVB-N prediction model. The best model was the prediction model based on MSC and PLS. RMSEP of the model was 1.845 4, and R2 was 0.884 1. The results show that the prediction model of pomfret meat freshness based on near-infrared spectroscopy has high accuracy, which provides theoretical basis for rapid detection of pomfret meat freshness.

参考文献/References:

[1]戴梓茹,钟秋平,林美芳,等. 金鲳鱼营养成分分析与评价[J]. 食品工业科技, 2013, 34(1):347-350.
[2]薛鹏,葛诗琪,徐锦华,等. 杂交鲟和金鲳鱼块非冻贮藏过程鲜度变化研究[J]. 食品安全质量检测学报, 2019, 10(8):70-79.
[3]赵永强,李娜,李来好,等. 鱼类鲜度评价指标及测定方法的研究进展[J]. 大连海洋大学学报, 2016, 31(4):456-462.
[4]邱洪涛,孙裴,侯金波,等. 基于Caffe的猪肉新鲜度分级的设计与实现[J]. 江苏农业学报, 2019, 35(2):461-468.
[5]曾斯杰,刘红,王友法,等. 近红外光谱在食品工业应用的研究进展[J]. 中国调味品, 2019, 44(7):179-183.
[6]褚小立,陆婉珍. 近五年我国近红外光谱分析技术研究与应用进展[J]. 光谱学与光谱分析, 2014, 34(10):2595-2605.
[7]陈超,柳琦,李钒,等. 红外光谱技术在食品安全检测中的研究与应用[J].食品研究与开发,2019,40(14):219-224.
[8]青丹,张娜,李玉静. 现代近红外光谱方法在食品检测中的应用[J]. 粮食流通技术, 2018(13):103-105.
[9]王文秀,彭彦昆,王凡,等. 局部偏最小二乘法结合可见-近红外光谱预测猪肉挥发性盐基氮[J]. 食品科学, 2019, 40(14):339-345.
[10]郭丽丽,花锦,张梨花,等. 基于近红外技术测定不同鲜肉中挥发性盐基氮含量[J]. 食品安全质量检测学报, 2018, 9(11):2739-2743.
[11]何鸿举,朱亚东,王慧,等. 近红外光谱技术在生鲜禽肉质量检测中应用的研究进展[J]. 食品科学, 2019, 40(21):317-323.
[12]姜洪喆,王伟,杨 一,等. 近红外光谱分析技术在鸡肉品质检测中的应用研究进展[J].食品安全质量检测学报, 2017,8(11):4298-4304.
[13]杨勇,杨庆余,林巍,等. 近红外光谱技术快速测定鹅肉嫩度[J]. 食品科学, 2014, 35(8):259-262.
[14]郑晓春,李永玉,彭彦昆,等. 基于可见/近红外光谱的牛肉品质无损检测系统改进[J]. 农业机械学报, 2016, 47(增刊1):332-339.
[15]彭彦昆,杨清华,王文秀. 基于近红外光谱的猪肉水分在线检测与分级[J]. 农业机械学报, 2018, 49(3):347-353.
[16]李江华. 肉与肉制品中水分含量的测定[J]. 肉类研究, 2018,32(2):前插13-前插14.
[17]胡云峰,王雅迪,唐裕轩. 猪肉糜在贮藏过程中的变化规律及新鲜度快速测定方法的研究[J]. 食品研究与开发, 2018, 39(15):178-182.
[18]宋相中,唐果,张录达,等. 近红外光谱分析中的变量选择算法研究进展[J]. 光谱学与光谱分析, 2017,37(4):1048-1052.
[19]白铁成,王涛,陈佑启,等. 南疆沙尘区骏枣叶片水分含量检测的近红外光谱预处理方法对比[J]. 光谱学与光谱分析, 2019, 39(4):1323-1328.
[20]王骏超,葛俊锋. NIRS数据样本选择与预处理方法综述[J]. 国外电子测量技术, 2019(3):1-7.

相似文献/References:

[1]唐森,李军生,胡金鑫,等.应用三甲胺+二甲胺与氧化三甲胺摩尔比值评价冷冻鱼产品的新鲜程度[J].江苏农业学报,2016,(01):222.[doi:10.3969/j.issn.1000-4440.2016.01.035 ]
 TANG Sen,LI Jun-sheng,HU Jin-xin,et al.Applications of (trimethylamine+dimethylamine)/trimethylamine oxide molar ratio for frozen fish freshness evaluation[J].,2016,(01):222.[doi:10.3969/j.issn.1000-4440.2016.01.035 ]
[2]张平平,张瑜,唐果,等.近红外光谱技术检测小麦谷蛋白大聚体含量[J].江苏农业学报,2017,(06):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
 ZHANG Ping-ping,ZHANG Yu,TANG Guo,et al.Measurement of SDS-unextractable polymeric protein content in wheat flour based on near-infrared spectroscopy (NIRS) technique[J].,2017,(01):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
[3]仇逊超.红松仁脂肪的近红外光谱定量检测[J].江苏农业学报,2018,(03):692.[doi:doi:10.3969/j.issn.1000-4440.2018.03.031]
 QIU Xun-chao.Quantitative detection of fat in peeled Korean pine seeds using near infrared spectroscopy[J].,2018,(01):692.[doi:doi:10.3969/j.issn.1000-4440.2018.03.031]
[4]彭雅玲,邱雪,张海红,等.近红外光谱技术检测灵武长枣果肉硬度和贮藏时间[J].江苏农业学报,2019,(01):182.[doi:doi:10.3969/j.issn.1000-4440.2019.01.026]
 PENG Ya-ling,QIU Xue,ZHANG Hai-hong,et al.Near-infrared spectroscopy for the determination of hardness and storage time of jujube fruit[J].,2019,(01):182.[doi:doi:10.3969/j.issn.1000-4440.2019.01.026]
[5]邱洪涛,孙裴,侯金波,等.基于Caffe的猪肉新鲜度分级的设计与实现[J].江苏农业学报,2019,(02):461.[doi:doi:10.3969/j.issn.1000-4440.2019.02.029]
 QIU Hong-tao,SUN Pei,HOU Jin-bo,et al.Design and implementation of pork freshness grading based on Caffe[J].,2019,(01):461.[doi:doi:10.3969/j.issn.1000-4440.2019.02.029]
[6]张津源,张德贤,张苗.基于连续投影算法的小麦蛋白质含量近红外光谱预测分析[J].江苏农业学报,2019,(04):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
 ZHANG Jin yuan,ZHANG De xian,ZHANG Miao.Prediction and analysis of wheat protein content by nearinfrared spectroscopy based on successive projections algorithm[J].,2019,(01):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
[7]曲歌,陈争光,张庆华.基于无信息变量消除法的水稻种子发芽率测定[J].江苏农业学报,2019,(05):1015.[doi:doi:10.3969/j.issn.1000-4440.2019.05.002]
 QU Ge,CHEN Zheng-guang,ZHANG Qing-hua.Study on germination rate of rice seed based on uninformation variable elimination method[J].,2019,(01):1015.[doi:doi:10.3969/j.issn.1000-4440.2019.05.002]
[8]孙晓明,陈小龙,余向阳,等.基于近红外光谱分析技术的水蜜桃产地溯源[J].江苏农业学报,2020,(02):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
 SUN Xiao-ming,CHEN Xiao-long,YU Xiang-yang,et al.Traceability of honey peach origin using near infrared spectroscopy analysis techniques[J].,2020,(01):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
[9]谢文涌,柴琴琴,林旎,等.基于Stacking集成学习的马兜铃酸及其类似物鉴别[J].江苏农业学报,2021,(02):503.[doi:doi:10.3969/j.issn.1000-4440.2021.02.028]
 XIE Wen-yong,CHAI Qin-qin,LIN Ni,et al.Discrimination of aristolochic acid and its analogues based on stacking ensemble learning[J].,2021,(01):503.[doi:doi:10.3969/j.issn.1000-4440.2021.02.028]
[10]沈广辉,曹瑶瑶,刘馨,等.近红外高光谱成像结合特征波长筛选识别小麦赤霉病瘪粒[J].江苏农业学报,2021,(02):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]
 SHEN Guang-hui,CAO Yao-yao,LIU Xin,et al.Identification of Fusarium damaged kernels using near infrared hyperspectral imaging and characteristic bands selection[J].,2021,(01):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]

备注/Memo

备注/Memo:
收稿日期:2020-05-29基金项目:“十三五”国家重点研发计划项目(2018YFD0701003);北京市创新创业项目作者简介:方瑶(1999-),女,安徽合肥人,本科生,研究方向为农业信息化技术。(E-mail)cau_fangyao@foxmail.com通讯作者:李鑫星,(E-mail)lxxcau@cau.edu.cn
更新日期/Last Update: 2021-03-15