参考文献/References:
[1]孟颖,陈桂芬,卢建,等. Simulink平台在玉米病害视频图像中的实时诊断[J]. 吉林农业大学学报, 2017, 39(4): 483-487.
[2]许景辉,邵明烨,王一琛,等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236,253.
[3]龙满生,欧阳春娟,刘欢,等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18): 194-201.
[4]周云成,许童羽,邓寒冰,等. 基于自监督学习的番茄植株图像深度估计方法[J]. 农业工程学报, 2019, 35(24): 173-182.
[5]孙俊,何小飞,谭文军,等. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报, 2018, 34(11): 159-165.
[6]刘永波,雷波,曹艳,等. 基于深度卷积神经网络的玉米病害识别[J]. 中国农学通报, 2018, 34(36): 159-164.
[7]顾博,邓蕾蕾,李巍,等. 基于GrabCut算法的玉米病害图像识别方法研究[J]. 中国农机化学报, 2019, 40(11): 143-149.
[8]张善文,张传雷. 基于局部判别映射算法的玉米病害识别方法[J]. 农业工程学报, 2014, 30(11): 167-172.
[9]HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE. 2016 IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 770-778.
[10]JUNG H, CHOI M K, JUNG J, et al. ResNetbas-ed vehicle classification and localization in traffic surveillance systems[C]//IEEE. 2017 IEEE conference on computer vision and pattern recognition. Honolulu: IEEE, 2017: 61-67.
[11]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//IEEE. 2017 IEEE conference on computer vision and pattern recognition. Honolulu: IEEE, 2017: 2980-2988.
[12]MOHANTY S P, HUGHES D P, SALATHE M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016, 7: 1419.
[13]SINGKEK SCI-TECH. Agricultural Disease. 2018 AI Challenger [DB/OL]. (2018-12-19)
[2020-3-20]. https://challenger.ai/competition/pdr2018.
[14]朱威,屈景怡,吴仁彪. 结合批归一化的直通卷积神经网络图像分类算法[J]. 计算机辅助设计与图形学学报, 2017, 29(9): 1650-1657.
[15]PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359.
[16]石祥滨,房雪键,张德园,等. 基于深度学习混合模型迁移学习的图像分类[J]. 系统仿真学报, 2016, 28(1): 167-173,182.
[17]任胜男,孙钰,张海燕,等. 基于one-shot学习的小样本植物病害识别[J]. 江苏农业学报, 2019, 35(5): 1061-1067.
[18]HU K, ZHANG Z, NIU X, et al. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function[J]. Neurocomputing, 2018, 309: 179-191.
[19]SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//IEEE. 2018 IEEE conference on computer vision and pattern recognition. Salt Lake City: IEEE, 2018: 4510-4520.
[20]SZEGEDY C, VANHOUCKE V, IOFFE S, et al.Rethinking the inception architecture for computervision[C]//IEEE. 2016 IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 2818-2826.
[21]CHOLLET F. Xception: Deep learning with dept-hwise separable convolutions[C]//IEEE. 2017 IEEE Conference on computer vision and pattern recognition. Honolulu: IEEE, 2017: 1251-1258.
[22]刘小峰,舒仁杰,柏林,等. 一种新的稀疏分类融合方法及其在机车轴承故障诊断中的应用[J]. 中国电机工程学报, 2020, 40(17): 5675-5682.