[1]梅瑜,王继华,蔡时可,等.金线莲应答高温胁迫的蛋白质组学分析[J].江苏农业学报,2020,(06):1389-1397.[doi:doi:10.3969/j.issn.1000-4440.2020.06.006]
 MEI Yu,WANG Ji-hua,CAI Shi-ke,et al.Proteomics analysis on Anoectochilus roxburghii in response to high temperature stress[J].,2020,(06):1389-1397.[doi:doi:10.3969/j.issn.1000-4440.2020.06.006]
点击复制

金线莲应答高温胁迫的蛋白质组学分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
1389-1397
栏目:
遗传育种·生理生化
出版日期:
2020-12-31

文章信息/Info

Title:
Proteomics analysis on Anoectochilus roxburghii in response to high temperature stress
作者:
梅瑜1王继华1蔡时可1陈栋2
(1.广东省农业科学院作物研究所/广东省农作物遗传改良重点实验室,广东广州510640;2.广东省农业科学院茶叶研究所/广东省茶树种质资源创新利用重点实验室,广东广州510640)
Author(s):
MEI Yu1WANG Ji-hua1CAI Shi-ke1CHEN Dong2
(1.Crop Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou 510640, China;2.Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China)
关键词:
金线莲高温胁迫耐热资源蛋白质组学
Keywords:
Anoectochilus roxburghiihigh temperature stressheat resistant resourcesproteomics
分类号:
Q816;S567
DOI:
doi:10.3969/j.issn.1000-4440.2020.06.006
文献标志码:
A
摘要:
金线莲是传统的名贵中药材,以耐热品系金线莲NYJ2为研究对象,分析其在蛋白质水平上对高温胁迫的响应。通过比较高温胁迫前后NYJ2叶片蛋白质组学的变化,获得二级图谱326 478个,匹配到34 376个,鉴定到肽段9 804个,蛋白质2 534个,大多数肽段分布的长度在7~25 aa。通过对高温胁迫前后蛋白质数量和种类的差异分析,共获得143个差异表达的蛋白质,其中,40个蛋白质上调表达,103个下调表达,HSP20家族的基因(HSP17.4)编码蛋白质、病程相关蛋白质(PR)、谷胱甘肽S-转移酶(GSTF1)、过氧化氢酶(CAT)的表达差异较多。另外,在KOG功能分类中发现有112个功能不明确的蛋白质,223个信号转导机制蛋白质。通过分析NYJ2在蛋白质组学层面对热胁迫的响应,为金线莲耐热栽培提供了参考依据。
Abstract:
Anoectochilus roxburghii is a kind of precious Chinese herbal medicine. In this study, the heat-resistant A. roxburghii strain NYJ2 was used as the research object to study its response to high temperature stress at protein level. 326 478 second-order spectra were got by comparing the difference of protemics for the leaves of NYJ2 before and after high temperature stress. After filtering, 34 376 spectra were matched, 9 804 peptides and 2 534 proteins were identified. The length range of most peptides was 7-25 aa. 143 differentially expressed proteins were got by analyzing the number and species differences of the proteins before and after high temperature stress, 40 of which were significantly up-regulated and 103 were significantly down-regulated. There were many expressional differences in the HSP20 family gene (HSP17.4) encoded protein, pathogenesis-related (PR) protein, glutathione S-transferase (GSTF1) and catalase (CAT). In addition, 112 proteins with ambiguous functions were found during functional classification of KOG, and 223 proteins were related to signaling mechanism. References are made for the heat-resistant cultivation of A.roxburghii by analyzing the response of NYJ2 to high temperature stress at protemics level.

参考文献/References:

[1]梅瑜,邱道寿,肖深根,等. 筛选金线莲种质资源的通用 DNA 条形码序列及鉴定其混伪品[J]. 分子植物育种, 2019, 17(15):5163-5170.
[2]张超,易骏,张若青,等. 金线莲及其混伪品中总黄酮含量的比较研究[J]. 药学实践杂志, 2019(6):495-497.
[3]杨岚,师帅,王红娟,等. 水杨酸对高温胁迫下铁皮石斛幼苗耐热性的影响[J]. 西北植物学报, 2013, 33(3):534-540.
[4]付强,赵杰宏,刘育辰,等. 药用植物蛋白质组学的研究进展[J]. 贵州农业科学, 2018, 46(10):22-25.
[5]刘军铭,赵琪,尹赜鹏,等. 利用蛋白质组学技术揭示的植物高温胁迫响应机制[J]. 应用生态学报, 2015,26(8):328-337.
[6]陈旭,石垒,朱璐,等. 植物HSP70蛋白家族分子进化特征及其表达模式分析[J]. 基因组学与应用生物学, 2017(10):370-382.
[7]刘聪聪,张泽,关雪莲,等. 花楸树热激蛋白70基因的克隆及表达分析[J]. 分子植物育种, 2019, 17(19):6276-6286.
[8]姜福星,赵婕,孙晓兰,等. 白花虎眼万年青QtJMT基因的克隆及其植物表达载体的构建[J]. 分子植物育种, 2019(10):3267-3273.
[9]王涛,黄语燕,陈永快,等. 高温胁迫下外源壳聚糖对黄瓜幼苗生长的影响[J]. 江苏农业科学,2019,47(23):142-146.
[10]顾帆,季梦成,顾翠花,等. 高温干旱胁迫对黄薇抗氧化防御系统的影响[J]. 浙江农林大学学报, 2019, 36(5): 894-901
[11]赵勇竣,徐术菁,王钊,等. 高温胁迫对3个番茄品种生长和生理指标的影响[J]. 江苏农业科学,2019,47(17):147-149.
[12]覃泳智,周智丽,刘海涛,等. 外源水杨酸对高温胁迫微型月季生理指标的影响[J].南方农业学报,2018,49(10):2028-2033.
[13]李艳艳,王俊青,李植良,等. 高温胁迫对不同耐热性茄子叶肉细胞超微结构的影响[J].江苏农业科学,2018,46(18):138-140.
[14]查倩,奚晓军,蒋爱丽,等.高温胁迫对葡萄高温相关基因和蛋白表达的影响[J].中国农业科学,2017,50(9):1674-1683.
[15]江爱明,蔡高磊,曹俊,等.白及小分子热激蛋白BsHsp17.3基因的克隆与表达分析[J].广西植物,2018(9):1191-1198.
[16]ZHOU Y, CHEN H, CHU P, et al. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2012, 31(2):379-389.
[17]李敏,蒋昌华,胡永红,等. 月季Rchsp17.8基因转化烟草的非生物胁迫耐性研究[J]. 园艺学报, 2009, 36(8):1191-1196.
[18]BIBI A C, OOSTERHUIS D M, GONIAS E D. Photosynthesis, quantum yield of photosystem Ⅱ and membrane leakage as affected by high temperatures in cotton genotypes[J]. Journal of Cotton Science, 2008,12(2):150-159.
[19]HECKATHORN S A, RYAN S L, BAYLIS J A, et al. In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem Ⅱ during heat stress[J]. Functional Plant Biology, 2002, 29(8):933-944.
[20]张杰,单宝来,田永生,等.葡萄HSP17基因的合成与功能分析[J].江苏农业学报,2017,33(3):503-509.
[21]YANG M, ZHANG Y, ZHANG H,et al. Identification of MsHsp20 gene family in Malus sieversii and functional characterization of MsHsp16.9 in heat tolerance[J]. Frontiers in Plant Science, 2017(8):1761.
[22]MEI Y, QIU D, XIAO S, CHEN D. Evaluation of high temperature tolerance of different Anoectochilus germplasm resources and their physiological responses[J]. Applied Ecology and Environmental Research, 2018, 16(5):7017-7031.

相似文献/References:

[1]张杰,单宝来,田永生,等.葡萄HSP17基因的合成与功能分析[J].江苏农业学报,2017,(03):503.[doi:doi:10.3969/j.issn.1000-4440.2017.03.004]
 ZHANG Jie,SHAN Bao-lai,TIAN Yong-sheng,et al.Synthesis and functional analysis of HSP17 gene in grape[J].,2017,(06):503.[doi:doi:10.3969/j.issn.1000-4440.2017.03.004]
[2]邱爽,张军,何佳琦,等.大豆GmGolS2-1基因高温胁迫诱导表达及转基因烟草鉴定[J].江苏农业学报,2021,(01):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
 QIU Shuang,ZHANG Jun,HE Jia-qi,et al.Expression of soybean GmGolS2-1 induced by heat stress and identification of GmGolS2-1 transgenic tobacco[J].,2021,(06):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
[3]陈舒迪,柴琴琴,张勋,等.基于多特征融合和LightGBM的金线莲品系识别[J].江苏农业学报,2021,(01):155.[doi:doi:10.3969/j.issn.1000-4440.2021.01.020]
 CHEN Shu-di,CHAI Qin-qin,ZHANG Xun,et al.Identification of Anoectochilus roxburghii strains based on multi feature fusion and LightGBM[J].,2021,(06):155.[doi:doi:10.3969/j.issn.1000-4440.2021.01.020]
[4]张斌,杨昕霞,袁志辉.水稻响应热胁迫核心基因的筛选与鉴定[J].江苏农业学报,2021,(04):817.[doi:doi:10.3969/j.issn.1000-4440.2021.04.001]
 ZHANG Bin,YANG Xin-xia,YUAN Zhi-hui.Screening and identification of core genes responding to heat stress in rice[J].,2021,(06):817.[doi:doi:10.3969/j.issn.1000-4440.2021.04.001]
[5]徐鹏,贺一哲,尤翠翠,等.高温胁迫导致水稻颖花败育的机理及其防御措施研究进展[J].江苏农业学报,2023,(01):255.[doi:doi:10.3969/j.issn.1000-4440.2023.01.029]
 XU Peng,HE Yi-zhe,YOU Cui-cui,et al.Research progress on the mechanism and defense measures of rice spikelet abortion caused by high temperature stress[J].,2023,(06):255.[doi:doi:10.3969/j.issn.1000-4440.2023.01.029]
[6]张雪莲,罗德旭,杨红,等.外源褪黑素和硒对高温胁迫下辣椒生理特性和抗氧化系统的影响[J].江苏农业学报,2023,(08):1729.[doi:doi:10.3969/j.issn.1000-4440.2023.08.013]
 ZHANG Xue-lian,LUO De-xu,YANG Hong,et al.Effects of exogenous melatonin and selenium on physiological properties and antioxidant systems of chilies under high temperature stress[J].,2023,(06):1729.[doi:doi:10.3969/j.issn.1000-4440.2023.08.013]
[7]李萌楠,乐秀虎,周阳,等.二氢卟吩铁调控辣椒对高温胁迫的耐性及相关基因的表达[J].江苏农业学报,2024,(06):1070.[doi:doi:10.3969/j.issn.1000-4440.2024.06.014]
 LI Mengnan,LE Xiuhu,ZHOU Yang,et al.Regulation of iron chlorine e6 on high temperature stress tolerance and related gene expression in pepper[J].,2024,(06):1070.[doi:doi:10.3969/j.issn.1000-4440.2024.06.014]
[8]徐彤,王英琪,李渊,等.小分子热激蛋白在植物应对高温胁迫中的作用[J].江苏农业学报,2024,(07):1343.[doi:doi:10.3969/j.issn.1000-4440.2024.07.021]
 XU Tong,WANG Yingqi,LI Yuan,et al.Role of small molecule heat shock proteins in plants’ response to high temperature stress[J].,2024,(06):1343.[doi:doi:10.3969/j.issn.1000-4440.2024.07.021]

备注/Memo

备注/Memo:
收稿日期:2020-04-25基金项目:广东省农业科学院作物研究所重点实验室开放基金项目(201909);广东省农业科学院汕尾分院科技合作专项(2019)作者简介:梅瑜(1984-),女,山东莱州人,博士,助理研究员,主要从事药用植物栽培育种研究。(E-mail)meiyu@gdaas.cn通讯作者:王继华,(E-mail)wangjihua@gdaas.cn;陈栋,(E-mail)chendong1113@sohu.com
更新日期/Last Update: 2021-01-15