[1]范德佳,陈士强,王建华,等.利用CRISPR/Cas技术改良作物抗病性的研究进展[J].江苏农业学报,2020,(05):1312-1321.[doi:doi:10.3969/j.issn.1000-4440.2020.05.031]
 FAN De-jia,CHEN Shi-qiang,WANG Jian-hua,et al.Advances in improvement of crop disease resistance using CRISPR/Cas technology[J].,2020,(05):1312-1321.[doi:doi:10.3969/j.issn.1000-4440.2020.05.031]
点击复制

利用CRISPR/Cas技术改良作物抗病性的研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年05期
页码:
1312-1321
栏目:
综述
出版日期:
2020-10-31

文章信息/Info

Title:
Advances in improvement of crop disease resistance using CRISPR/Cas technology
作者:
范德佳陈士强王建华张容刘建凤陈秀兰何震天
(江苏里下河地区农业科学研究所,江苏扬州225007)
Author(s):
FAN De-jiaCHEN Shi-qiangWANG Jian-huaZHANG RongLIU Jian-fengCHEN Xiu-lanHE Zhen-tian
(Institute of Agricultural Sciences of the Lixiahe District in Jiangsu Province, Yangzhou 225007, China)
关键词:
基因组编辑技术CRISPR/Cas作物抗病性
Keywords:
genome editing technologyCRISPR/Cascrop disease resistance
分类号:
S336
DOI:
doi:10.3969/j.issn.1000-4440.2020.05.031
文献标志码:
A
摘要:
病原体引起的作物病害日益增多,严重威胁世界粮食安全。CRISPR/Cas等基因组编辑技术能够实现基因组DNA片段插入或缺失、碱基编辑以及基因表达调控,已成为作物抗病育种的重要方法。植物具有模式触发免疫反应(PTI)和效应子触发免疫反应(ETI)两层免疫机制,相关基因可分为抗性基因(R)和感病基因(S)。通过基因组编辑技术改造R基因或S基因,能够改良作物对病原体的抗性,以及定向降解病毒基因组可增强作物对病毒的抗性。水稻、小麦、番茄等作物已成功运用基因组编辑技术改良抗病性。基因组编辑技术发展迅速,效率不断提高,但仍应在相关法规的监管下依法进行研究。本文介绍了作物的抗病免疫机制和CRISPR/Cas技术在基因组编辑中的应用,总结了改良作物抗病性的基因组编辑策略以及利用CRISPR/Cas技术提高作物抗病性的研究现状,并展望了CRISPR/Cas技术在改良作物抗病性中的发展前景。
Abstract:
The increasing plant diseases caused by pathogens threaten the world food security seriously. CRISPR/Cas and other genome-editing technologies have been developed rapidly, including insertion or deletion of DNA segments, base editing and gene expression regulation. These technologies are becoming important methods for crop disease resistance breeding. Plant immune mechanism has two layers, PRR-triggered immunity(PTI) and effector-triggered immunity(ETI). The related genes include resistant gene (R) and susceptible gene (S). Through genome editing technology, the R gene or S gene can be modified to improve the resistance of crops towards fungal and bacterial diseases, and the viral disease resistance can be enhanced by the targeted degradation of viral genome. Genome editing technology has been used in rice, wheat, tomato and other crops to improve disease resistance. In spite of the rapid development of genomic editing technology and continuous improvement of efficiency, we should carry out researches under the supervision of relevant laws and regulations. In this paper, the immune mechanism of plant and the application of CRISPR/Cas technology in genome-editing were introduced, and the genome-editing strategies for improving crop disease resistance and the research status of using CRISPR/Cas technology to enhance crop resistance were summarized. Finally, we prospected the future of CRISPR/Cas technology in crop resistance improvement.

参考文献/References:

[1]FAO. The future of food and agriculture-Alternative pathways to 2050. Summary version[M]. Rome: Food and Agriculture Organization of the United Nations, 2018.
[2]GAJ T, GERSBACH C A, BARBAS C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology, 2013, 31(7): 397-405.
[3]GAO C. The future of CRISPR technologies in agriculture[J]. Nature Reviews Molecular Cell Biology, 2018, 19(5): 275-276.
[4]GAO H, GADLAGE M J, LAFITTE H R, et al. Superior field performance of waxy corn engineered using CRISPR-Cas9[J]. Nature Biotechnology, 2020, 38(5): 579-581.
[5]张杰,董莎萌,王伟,等. 植物免疫研究与抗病虫绿色防控:进展、机遇与挑战[J]. 中国科学: 生命科学, 2019, 49(11): 1479-1507.
[6]ROBATZEK S, BITTEL P, CHINCHILLA D, et al. Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities[J]. Plant Molecular Biology, 2007, 64(5): 539-547.
[7]GREENBERG J T, YAO N. The role and regulation of programmed cell death in plant-pathogen interactions[J]. Cellular Microbiology, 2004, 6(3): 201-211.
[8]CHISHOLM S T, COAKER G, DAY B, et al. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4): 803-814.
[9]JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329.
[10]JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
[11]舒心媛,严旭,蒲烨弘,等. CRISPR/Cas系统的作用原理及其在作物遗传改良中的应用[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 259-268,381.
[12]SYMINGTON L S, GAUTIER J. Double-strand break end resection and repair pathway choice[J]. Annual Review of Genetics, 2011, 45(1): 247-271.
[13]LANGNER T, KAMOUN S, BELHAJ K. CRISPR crops: Plant genome editing toward disease resistance[J]. Annual Review of Phytopathology, 2018, 56(1): 479-512.
[14]ZHOU H, LIU B, WEEKS D P, et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice[J]. Nucleic Acids Research, 2014, 42(17): 10903-10914.
[15]BROOKS C, NEKRASOV V, LIPPMAN Z B, et al. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system[J]. Plant Physiology, 2014, 166(3): 1292-1297.
[16]LI S, SHEN L, HU P, et al. Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing[J]. Journal of Integrative Plant Biology, 2019, 61(12): 1201-1205.
[17]WANG Y, CHENG X, SHAN Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology, 2014, 32(9): 947-951.
[18]LI J, MENG X, ZONG Y, et al. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9[J]. Nature Plants, 2016, 2(10): 16139.
[19]WANG M, LU Y, BOTELLA J R, et al. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(7): 1007-1010.
[20]CHEN K, WANG Y, ZHANG R, et al. CRISPR/Cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology, 2019, 70(1): 667-697.
[21]KOMOR A, KIM Y, PACKER M, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424.
[22]GAUDELLI N, KOMOR A, REES H, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471.
[23]LI C, ZONG Y, WANG Y, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J]. Genome Biology, 2018, 19(1): 59.
[24]ZHANG Y, MALZAHN A A, SRETENOVIC S, et al. The emerging and uncultivated potential of CRISPR technology in plant science[J]. Nature Plants, 2019, 5(8): 778-794.
[25]QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183.
[26]PIATEK A, ALI Z, BAAZIM H, et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors[J]. Plant Biotechnology Journal, 2015, 13(4): 578-589.
[27]GALLEGO-BARTOLOM J, GARDINER J, LIU W, et al. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain[J]. Proceedings of the National Academy of Sciences, 2018, 115(9):2125-2134.
[28]PAPIKIAN A, LIU W, GALLEGO-BARTOLOM J, et al. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems[J]. Nature Communications, 2019, 10(1): 729.
[29]O’CONNELL M, OAKES B, STERNBERG S, et al. Programmable RNA recognition and cleavage by CRISPR/Cas9[J]. Nature, 2014, 516(7530): 263-266.
[30]ANDOLFO G, IOVIENO P, FRUSCIANTE L, et al. Genome-editing technologies for enhancing plant disease resistance[J]. Frontiers in Plant Science, 2016, 7: 1813.
[31]DONG O X, RONALD P C. Genetic engineering for disease resistance in plants: Recent progress and future perspectives[J]. Plant Physiology, 2019, 180(1): 26-38.
[32]GIANNAKOPOULOU A, STEELE J F, SEGRETIN M E, et al. Tomato I2 immune receptor can be engineered to confer partial resistance to the oomycete Phytophthora infestans in addition to the fungus Fusarium oxysporum[J]. Molecular Plant-Microbe Interactions, 2015, 28(12): 1316-1329.
[33]KIM S H, QI D, ASHFIELD T, et al. Using decoys to expand the recognition specificity of a plant disease resistance protein[J]. Science, 2016, 351(6274): 684-687.
[34]LAPIN D, VAN DEN ACKERVEKEN G. Susceptibility to plant disease: more than a failure of host immunity[J]. Trends in Plant Science, 2013, 18(10): 546-554.
[35]FUKUOKA S, SAKA N, KOGA H, et al. Loss of function of a proline-containing protein confers durable disease resistance in rice[J]. Science, 2009, 325(5943): 998-1001.
[36]ROMAY G, BRAGARD C. Antiviral defenses in plants through genome editing[J]. Frontiers in Microbiology, 2017(8): 47.
[37]ZHANG T, ZHENG Q, YI X, et al. Establishing RNA virus resistance in plants by harnessing CRISPR immune system[J]. Plant Biotechnology Journal, 2018, 16(8): 1415-1423.
[38]PRICE A A, SAMPSON T R, RATNER H K, et al. Cas9-mediated targeting of viral RNA in eukaryotic cells[J]. Proceedings of the National Academy of Sciences, 2015, 112(19): 6164-6169.
[39]ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299):5573.
[40]SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Molecular Cell, 2015, 60(3): 385-397.
[41]BORRELLI V M G, BRAMBILLA V, ROGOWSKY P, et al. The enhancement of plant disease resistance using CRISPR/Cas9 technology[J]. Frontiers in Plant Science, 2018(9): 1245.
[42]NEKRASOV V, WANG C, WIN J, et al. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion[J]. Scientific Reports, 2017, 7(1): 482.
[43]蒲艳,刘超,李继洋,等. 番茄U6启动子的克隆及CRISPR/Cas9基因编辑体系的建立[J]. 中国农业科学, 2018, 51(2): 315-326.
[44]MA J, CHEN J, WANG M, et al. Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice[J]. Journal of Experimental Botany, 2017, 69(5): 1051-1064.
[45]WANG F, WANG C, LIU P, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One, 2016, 11(4):e0154027.
[46]徐鹏,王宏,涂燃冉,等. 利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性[J]. 中国水稻科学, 2019, 33(4): 313-322.
[47]王芳权,范方军,李文奇,等. 利用 CRISPR/Cas9技术敲除水稻 Pi21基因的效率分析[J]. 中国水稻科学, 2016, 30(5): 469-478.
[48]杨海河,毕冬玲,张玉,等. 基于CRISPR/Cas9技术的水稻Pi21基因编辑材料的创制及稻瘟病抗性鉴定[J]. 分子植物育种, 2017,15(11):4451-4465.
[49]WANG X, TU M, WANG D, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation[J]. Plant Biotechnology Journal, 2018, 16(4): 844-855.
[50]STREUBEL J, PESCE C, HUTIN M, et al. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae[J]. New Phytologist, 2013, 200(3): 808-819.
[51]ANTONY G, ZHOU J, HUANG S, et al. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3[J]. The Plant Cell, 2010, 22(11): 3864-3876.
[52]ZHOU J, PENG Z, LONG J, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice[J]. The Plant Journal, 2015, 82(4): 632-643.
[53]DOUCOUR H, PREZ-QUINTERO A L, RESHETNYAK G, et al. Functional and genome sequence-driven characterization of TAL effector gene repertoires reveals novel variants with altered specificities in closely related Malian Xanthomonas oryzae pv. oryzae strains[J]. Frontiers in Microbiology, 2018(9): 1657.
[54]JIANG W, ZHOU H, BI H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice[J]. Nucleic Acids Research, 2013, 41(20):e188.
[55]OLIVA R, JI C, ATIENZA-GRANDE G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nature Biotechnology, 2019, 37(11): 1344-1350.
[56]武广珩,傅仙玉. 利用CRISPR/Cas9技术编辑水稻负调控抗病基因OsEDR1及功能分析[J]. 应用与环境生物学报, 2020, 26(3): 1-10.
[57]郝巍,纪志远,郑凯丽,等. 利用基因组编辑技术创制水稻白叶枯病抗性材料[J]. 植物遗传资源学报, 2018, 19(3): 151-158.
[58]郑凯丽,纪志远,郝巍,等. 水稻白叶枯病感病相关基因Xig1的分子鉴定及抗病资源创制[J]. 作物学报, 2020. Doi:10.3724/SP.J.1006.2020.
[59]JIA H, ORBOVIC V, JONES J B, et al. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sg RNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCs LOB 1.3 infection[J]. Plant Biotechnology Journal, 2016, 14(5): 1291-1301.
[60]PENG A, CHEN S, LEI T, et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus[J]. Plant Biotechnology Journal, 2017, 15(12): 1509-1519.
[61]DE TOLEDO THOMAZELLA D P, BRAIL Q, DAHLBECK D, et al. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance[J]. Bio Rxiv, 2016. Doi:10.1101/064824.
[62]MALNOY M, VIOLA R, JUNG M-H, et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins[J]. Frontiers in Plant Science, 2016 (7): 1904.
[63]JI X, ZHANG H, ZHANG Y, et al. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants[J]. Nature Plants, 2015, 1(10): 15144.
[64]BALTES N J, HUMMEL A W, KONECNA E, et al. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system[J]. Nature Plants, 2015, 1(10): 15145.
[65]ALI Z, ABULFARAJ A, IDRIS A, et al. CRISPR/Cas9-mediated viral interference in plants[J]. Genome Biology, 2015, 16(1): 238.
[66]AMAN R, ALI Z, BUTT H, et al. RNA virus interference via CRISPR/Cas13a system in plants[J]. Genome Biology, 2018, 19(1): 1.
[67]CHANDRASEKARAN J, BRUMIN M, WOLF D, et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology[J]. Molecular Plant Pathology, 2016, 17(7): 1140-1153.
[68]付紫梅,向本春,袁伦,等. 靶向加工番茄elF4E1的CRISPR/Cas9载体有效性验证[J].新疆农业科学, 2018, 55(2): 230-237.
[69]杨晶,李冠,王旭辉,等. CRISPR-Cas9技术敲除甜瓜eIF4E基因表达载体的构建[J].新疆农业科学, 2018, 55(5): 821-828.
[70]潘洪杏,刘侠,万秀清,等. 利用CRISPR-Cas9基因组编辑技术定向敲除烟草eIF4E-6基因[J]. 分子植物育种, 2017, 15(2):538-544.
[71]PYOTT D E, SHEEHAN E, MOLNAR A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants[J]. Molecular Plant Pathology, 2016, 17(8): 1276-1288.
[72]MACOVEI A, SEVILLA N R, CANTOS C, et al. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to rice tungro spherical virus[J]. Plant Biotechnology Journal, 2018, 16(11): 1918-1927.
[73]HUA K, ZHANG J, BOTELLA J R, et al. Perspectives on the application of genome-editing technologies in crop breeding[J]. Molecular Plant, 2019, 12(8): 1047-1059.
[74]JI X, YANG B, WANG D. Achieving plant genome editing while bypassing tissue culture[J]. Trends in Plant Science, 2020, 25(5): 427-429.
[75]HAMADA H, LINGHU Q, NAGIRA Y, et al. An in planta biolistic method for stable wheat transformation[J]. Scientific Reports, 2017, 7(1): 11443.
[76]MAHER M F, NASTI R A, VOLLBRECHT M, et al. Plant gene editing through de novo induction of meristems[J]. Nature Biotechnology, 2020, 38(1): 84-89.
[77]LOWE K, WU E, WANG N, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation[J]. The Plant Cell, 2016, 28(9): 1998-2015.
[78]DEMIRER G, ZHANG H, MATOS J, et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants[J]. Nature Nanotechnology, 2019, 14(5): 456-464.
[79]黄娟,邓国富,高利军,等. CRISPR/Cas9系统及其在作物育种中的应用[J].南方农业学报,2018,49(1):14-21.
[80]李莉,任红艳,毕延震,等. 基因编辑技术的新进展及展望[J]. 江苏农业科学,2018,46(23):5-10.
[81]KLEINSTIVER B P, PREW M S, TSAI S Q, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities[J]. Nature, 2015, 523(7561): 481-498.
[82]SLAYMAKER I M, GAO L, ZETSCHE B, et al. Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351(6268): 84-88.
[83]WOO J W, KIM J, KWON S I, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins[J]. Nature Biotechnology, 2015, 33(11): 1162-1164.
[84]LIN Q, ZONG Y, XUE C, et al. Prime genome editing in rice and wheat[J]. Nature Biotechnology, 2020, 38(5): 582-585.
[85]MING M, REN Q, PAN C, et al. CRISPR-Cas12b enables efficient plant genome engineering[J]. Nature Plants, 2020, 6(3): 202-208.
[86]农业部农业转基因生物安全管理办公室. 农业转基因生物安全管理条例(2017年10月7日修订版)[EB/OL]. (2017-12-22)
[2020-03-21]. http://www.moa.gov.cn/ztzl/zjyqwgz/xggzjg/201007/t20100717_1601306.htm.
[87]农业农村部. 农业农村部办公厅关于印发2020年农业转基因生物监管工作方案的通知[EB/OL]. (2020-1-10)
[2020-03-21]. http://www.moa.gov.cn/nybgb/2020/202002/202004/t20200414_6341549.htm.
[88]沈平,章秋艳,杨立桃,等. 基因组编辑技术及其安全管理[J]. 中国农业科学, 2017, 50(8): 1361-1369.
[89]焦悦,吴刚,黄耀辉,等. 基因组编辑技术及其安全评价管理[J]. 中国农业科技导报, 2018, 20(4): 12-19.
[90]薛满德,龙艳,裴新梧. 基因编辑技术及其在作物育种中的应用与安全管理[J]. 中国农业科技导报, 2018, 20(9): 12-22.
[91]HUANG S, WEIGEL D, BEACHY R N, et al. A proposed regulatory framework for genome-edited crops[J]. Nature Genetics, 2016, 48(2): 109-111.

备注/Memo

备注/Memo:
收稿日期:2020-03-22基金项目:国家转基因生物新品种培育重大专项(2016ZX08002-001);省农业重大新品种创制项目(PZCZ201707);国家重点研发计划项目(2016YFD0102101、2017YFD0100801);江苏省自然科学基金项目(BK20181213);江苏里下河地区农业科学研究所项目[SJ(17)303]作者简介:范德佳(1990-),男,江苏沭阳人,博士,助理研究员,主要从事水稻分子育种工作。(E-mail)fandejia2008@163.com通讯作者:何震天,(E-mail)yzhzt@126.com
更新日期/Last Update: 2020-11-16