参考文献/References:
[1]FAO. The future of food and agriculture-Alternative pathways to 2050. Summary version[M]. Rome: Food and Agriculture Organization of the United Nations, 2018.
[2]GAJ T, GERSBACH C A, BARBAS C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology, 2013, 31(7): 397-405.
[3]GAO C. The future of CRISPR technologies in agriculture[J]. Nature Reviews Molecular Cell Biology, 2018, 19(5): 275-276.
[4]GAO H, GADLAGE M J, LAFITTE H R, et al. Superior field performance of waxy corn engineered using CRISPR-Cas9[J]. Nature Biotechnology, 2020, 38(5): 579-581.
[5]张杰,董莎萌,王伟,等. 植物免疫研究与抗病虫绿色防控:进展、机遇与挑战[J]. 中国科学: 生命科学, 2019, 49(11): 1479-1507.
[6]ROBATZEK S, BITTEL P, CHINCHILLA D, et al. Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities[J]. Plant Molecular Biology, 2007, 64(5): 539-547.
[7]GREENBERG J T, YAO N. The role and regulation of programmed cell death in plant-pathogen interactions[J]. Cellular Microbiology, 2004, 6(3): 201-211.
[8]CHISHOLM S T, COAKER G, DAY B, et al. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4): 803-814.
[9]JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329.
[10]JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
[11]舒心媛,严旭,蒲烨弘,等. CRISPR/Cas系统的作用原理及其在作物遗传改良中的应用[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 259-268,381.
[12]SYMINGTON L S, GAUTIER J. Double-strand break end resection and repair pathway choice[J]. Annual Review of Genetics, 2011, 45(1): 247-271.
[13]LANGNER T, KAMOUN S, BELHAJ K. CRISPR crops: Plant genome editing toward disease resistance[J]. Annual Review of Phytopathology, 2018, 56(1): 479-512.
[14]ZHOU H, LIU B, WEEKS D P, et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice[J]. Nucleic Acids Research, 2014, 42(17): 10903-10914.
[15]BROOKS C, NEKRASOV V, LIPPMAN Z B, et al. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system[J]. Plant Physiology, 2014, 166(3): 1292-1297.
[16]LI S, SHEN L, HU P, et al. Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing[J]. Journal of Integrative Plant Biology, 2019, 61(12): 1201-1205.
[17]WANG Y, CHENG X, SHAN Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology, 2014, 32(9): 947-951.
[18]LI J, MENG X, ZONG Y, et al. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9[J]. Nature Plants, 2016, 2(10): 16139.
[19]WANG M, LU Y, BOTELLA J R, et al. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(7): 1007-1010.
[20]CHEN K, WANG Y, ZHANG R, et al. CRISPR/Cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology, 2019, 70(1): 667-697.
[21]KOMOR A, KIM Y, PACKER M, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424.
[22]GAUDELLI N, KOMOR A, REES H, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471.
[23]LI C, ZONG Y, WANG Y, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J]. Genome Biology, 2018, 19(1): 59.
[24]ZHANG Y, MALZAHN A A, SRETENOVIC S, et al. The emerging and uncultivated potential of CRISPR technology in plant science[J]. Nature Plants, 2019, 5(8): 778-794.
[25]QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183.
[26]PIATEK A, ALI Z, BAAZIM H, et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors[J]. Plant Biotechnology Journal, 2015, 13(4): 578-589.
[27]GALLEGO-BARTOLOM J, GARDINER J, LIU W, et al. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain[J]. Proceedings of the National Academy of Sciences, 2018, 115(9):2125-2134.
[28]PAPIKIAN A, LIU W, GALLEGO-BARTOLOM J, et al. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems[J]. Nature Communications, 2019, 10(1): 729.
[29]O’CONNELL M, OAKES B, STERNBERG S, et al. Programmable RNA recognition and cleavage by CRISPR/Cas9[J]. Nature, 2014, 516(7530): 263-266.
[30]ANDOLFO G, IOVIENO P, FRUSCIANTE L, et al. Genome-editing technologies for enhancing plant disease resistance[J]. Frontiers in Plant Science, 2016, 7: 1813.
[31]DONG O X, RONALD P C. Genetic engineering for disease resistance in plants: Recent progress and future perspectives[J]. Plant Physiology, 2019, 180(1): 26-38.
[32]GIANNAKOPOULOU A, STEELE J F, SEGRETIN M E, et al. Tomato I2 immune receptor can be engineered to confer partial resistance to the oomycete Phytophthora infestans in addition to the fungus Fusarium oxysporum[J]. Molecular Plant-Microbe Interactions, 2015, 28(12): 1316-1329.
[33]KIM S H, QI D, ASHFIELD T, et al. Using decoys to expand the recognition specificity of a plant disease resistance protein[J]. Science, 2016, 351(6274): 684-687.
[34]LAPIN D, VAN DEN ACKERVEKEN G. Susceptibility to plant disease: more than a failure of host immunity[J]. Trends in Plant Science, 2013, 18(10): 546-554.
[35]FUKUOKA S, SAKA N, KOGA H, et al. Loss of function of a proline-containing protein confers durable disease resistance in rice[J]. Science, 2009, 325(5943): 998-1001.
[36]ROMAY G, BRAGARD C. Antiviral defenses in plants through genome editing[J]. Frontiers in Microbiology, 2017(8): 47.
[37]ZHANG T, ZHENG Q, YI X, et al. Establishing RNA virus resistance in plants by harnessing CRISPR immune system[J]. Plant Biotechnology Journal, 2018, 16(8): 1415-1423.
[38]PRICE A A, SAMPSON T R, RATNER H K, et al. Cas9-mediated targeting of viral RNA in eukaryotic cells[J]. Proceedings of the National Academy of Sciences, 2015, 112(19): 6164-6169.
[39]ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299):5573.
[40]SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Molecular Cell, 2015, 60(3): 385-397.
[41]BORRELLI V M G, BRAMBILLA V, ROGOWSKY P, et al. The enhancement of plant disease resistance using CRISPR/Cas9 technology[J]. Frontiers in Plant Science, 2018(9): 1245.
[42]NEKRASOV V, WANG C, WIN J, et al. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion[J]. Scientific Reports, 2017, 7(1): 482.
[43]蒲艳,刘超,李继洋,等. 番茄U6启动子的克隆及CRISPR/Cas9基因编辑体系的建立[J]. 中国农业科学, 2018, 51(2): 315-326.
[44]MA J, CHEN J, WANG M, et al. Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice[J]. Journal of Experimental Botany, 2017, 69(5): 1051-1064.
[45]WANG F, WANG C, LIU P, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One, 2016, 11(4):e0154027.
[46]徐鹏,王宏,涂燃冉,等. 利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性[J]. 中国水稻科学, 2019, 33(4): 313-322.
[47]王芳权,范方军,李文奇,等. 利用 CRISPR/Cas9技术敲除水稻 Pi21基因的效率分析[J]. 中国水稻科学, 2016, 30(5): 469-478.
[48]杨海河,毕冬玲,张玉,等. 基于CRISPR/Cas9技术的水稻Pi21基因编辑材料的创制及稻瘟病抗性鉴定[J]. 分子植物育种, 2017,15(11):4451-4465.
[49]WANG X, TU M, WANG D, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation[J]. Plant Biotechnology Journal, 2018, 16(4): 844-855.
[50]STREUBEL J, PESCE C, HUTIN M, et al. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae[J]. New Phytologist, 2013, 200(3): 808-819.
[51]ANTONY G, ZHOU J, HUANG S, et al. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3[J]. The Plant Cell, 2010, 22(11): 3864-3876.
[52]ZHOU J, PENG Z, LONG J, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice[J]. The Plant Journal, 2015, 82(4): 632-643.
[53]DOUCOUR H, PREZ-QUINTERO A L, RESHETNYAK G, et al. Functional and genome sequence-driven characterization of TAL effector gene repertoires reveals novel variants with altered specificities in closely related Malian Xanthomonas oryzae pv. oryzae strains[J]. Frontiers in Microbiology, 2018(9): 1657.
[54]JIANG W, ZHOU H, BI H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice[J]. Nucleic Acids Research, 2013, 41(20):e188.
[55]OLIVA R, JI C, ATIENZA-GRANDE G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nature Biotechnology, 2019, 37(11): 1344-1350.
[56]武广珩,傅仙玉. 利用CRISPR/Cas9技术编辑水稻负调控抗病基因OsEDR1及功能分析[J]. 应用与环境生物学报, 2020, 26(3): 1-10.
[57]郝巍,纪志远,郑凯丽,等. 利用基因组编辑技术创制水稻白叶枯病抗性材料[J]. 植物遗传资源学报, 2018, 19(3): 151-158.
[58]郑凯丽,纪志远,郝巍,等. 水稻白叶枯病感病相关基因Xig1的分子鉴定及抗病资源创制[J]. 作物学报, 2020. Doi:10.3724/SP.J.1006.2020.
[59]JIA H, ORBOVIC V, JONES J B, et al. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sg RNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCs LOB 1.3 infection[J]. Plant Biotechnology Journal, 2016, 14(5): 1291-1301.
[60]PENG A, CHEN S, LEI T, et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus[J]. Plant Biotechnology Journal, 2017, 15(12): 1509-1519.
[61]DE TOLEDO THOMAZELLA D P, BRAIL Q, DAHLBECK D, et al. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance[J]. Bio Rxiv, 2016. Doi:10.1101/064824.
[62]MALNOY M, VIOLA R, JUNG M-H, et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins[J]. Frontiers in Plant Science, 2016 (7): 1904.
[63]JI X, ZHANG H, ZHANG Y, et al. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants[J]. Nature Plants, 2015, 1(10): 15144.
[64]BALTES N J, HUMMEL A W, KONECNA E, et al. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system[J]. Nature Plants, 2015, 1(10): 15145.
[65]ALI Z, ABULFARAJ A, IDRIS A, et al. CRISPR/Cas9-mediated viral interference in plants[J]. Genome Biology, 2015, 16(1): 238.
[66]AMAN R, ALI Z, BUTT H, et al. RNA virus interference via CRISPR/Cas13a system in plants[J]. Genome Biology, 2018, 19(1): 1.
[67]CHANDRASEKARAN J, BRUMIN M, WOLF D, et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology[J]. Molecular Plant Pathology, 2016, 17(7): 1140-1153.
[68]付紫梅,向本春,袁伦,等. 靶向加工番茄elF4E1的CRISPR/Cas9载体有效性验证[J].新疆农业科学, 2018, 55(2): 230-237.
[69]杨晶,李冠,王旭辉,等. CRISPR-Cas9技术敲除甜瓜eIF4E基因表达载体的构建[J].新疆农业科学, 2018, 55(5): 821-828.
[70]潘洪杏,刘侠,万秀清,等. 利用CRISPR-Cas9基因组编辑技术定向敲除烟草eIF4E-6基因[J]. 分子植物育种, 2017, 15(2):538-544.
[71]PYOTT D E, SHEEHAN E, MOLNAR A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants[J]. Molecular Plant Pathology, 2016, 17(8): 1276-1288.
[72]MACOVEI A, SEVILLA N R, CANTOS C, et al. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to rice tungro spherical virus[J]. Plant Biotechnology Journal, 2018, 16(11): 1918-1927.
[73]HUA K, ZHANG J, BOTELLA J R, et al. Perspectives on the application of genome-editing technologies in crop breeding[J]. Molecular Plant, 2019, 12(8): 1047-1059.
[74]JI X, YANG B, WANG D. Achieving plant genome editing while bypassing tissue culture[J]. Trends in Plant Science, 2020, 25(5): 427-429.
[75]HAMADA H, LINGHU Q, NAGIRA Y, et al. An in planta biolistic method for stable wheat transformation[J]. Scientific Reports, 2017, 7(1): 11443.
[76]MAHER M F, NASTI R A, VOLLBRECHT M, et al. Plant gene editing through de novo induction of meristems[J]. Nature Biotechnology, 2020, 38(1): 84-89.
[77]LOWE K, WU E, WANG N, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation[J]. The Plant Cell, 2016, 28(9): 1998-2015.
[78]DEMIRER G, ZHANG H, MATOS J, et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants[J]. Nature Nanotechnology, 2019, 14(5): 456-464.
[79]黄娟,邓国富,高利军,等. CRISPR/Cas9系统及其在作物育种中的应用[J].南方农业学报,2018,49(1):14-21.
[80]李莉,任红艳,毕延震,等. 基因编辑技术的新进展及展望[J]. 江苏农业科学,2018,46(23):5-10.
[81]KLEINSTIVER B P, PREW M S, TSAI S Q, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities[J]. Nature, 2015, 523(7561): 481-498.
[82]SLAYMAKER I M, GAO L, ZETSCHE B, et al. Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351(6268): 84-88.
[83]WOO J W, KIM J, KWON S I, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins[J]. Nature Biotechnology, 2015, 33(11): 1162-1164.
[84]LIN Q, ZONG Y, XUE C, et al. Prime genome editing in rice and wheat[J]. Nature Biotechnology, 2020, 38(5): 582-585.
[85]MING M, REN Q, PAN C, et al. CRISPR-Cas12b enables efficient plant genome engineering[J]. Nature Plants, 2020, 6(3): 202-208.
[86]农业部农业转基因生物安全管理办公室. 农业转基因生物安全管理条例(2017年10月7日修订版)[EB/OL]. (2017-12-22)
[2020-03-21]. http://www.moa.gov.cn/ztzl/zjyqwgz/xggzjg/201007/t20100717_1601306.htm.
[87]农业农村部. 农业农村部办公厅关于印发2020年农业转基因生物监管工作方案的通知[EB/OL]. (2020-1-10)
[2020-03-21]. http://www.moa.gov.cn/nybgb/2020/202002/202004/t20200414_6341549.htm.
[88]沈平,章秋艳,杨立桃,等. 基因组编辑技术及其安全管理[J]. 中国农业科学, 2017, 50(8): 1361-1369.
[89]焦悦,吴刚,黄耀辉,等. 基因组编辑技术及其安全评价管理[J]. 中国农业科技导报, 2018, 20(4): 12-19.
[90]薛满德,龙艳,裴新梧. 基因编辑技术及其在作物育种中的应用与安全管理[J]. 中国农业科技导报, 2018, 20(9): 12-22.
[91]HUANG S, WEIGEL D, BEACHY R N, et al. A proposed regulatory framework for genome-edited crops[J]. Nature Genetics, 2016, 48(2): 109-111.