[1]李佳,邓钧尹,周伟,等.生物炭与硝化抑制剂对菜地综合温室效应的影响[J].江苏农业学报,2020,(05):1205-1211.[doi:doi:10.3969/j.issn.1000-4440.2020.05.018]
 LI Jia,DENG Jun-yin,ZHOU Wei,et al.Effects of biochar and nitrification inhibitor on the global warming potentials in vegetable field[J].,2020,(05):1205-1211.[doi:doi:10.3969/j.issn.1000-4440.2020.05.018]
点击复制

生物炭与硝化抑制剂对菜地综合温室效应的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年05期
页码:
1205-1211
栏目:
耕作栽培·资源环境
出版日期:
2020-10-31

文章信息/Info

Title:
Effects of biochar and nitrification inhibitor on the global warming potentials in vegetable field
作者:
李佳1邓钧尹1周伟23孙丽英1
(1.南京信息工程大学应用气象学院,江苏南京210044;2.中国科学院南京土壤研究所,江苏南京210008;3.中国科学院常熟农业生态实验站,江苏常熟215555)
Author(s):
LI Jia1DENG Jun-yin1ZHOU Wei23SUN Li-ying1
(1.College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China;2.Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;3.Changshu Agro-ecological Experimental Station, Chinese Academy of Sciences, Changshu 215555, China)
关键词:
生物炭硝化抑制剂CH4N2O菜地综合温室效应
Keywords:
biocharnitrification inhibitormethanenitrous oxidevegetable fieldglobal warming potential
分类号:
S181
DOI:
doi:10.3969/j.issn.1000-4440.2020.05.018
文献标志码:
A
摘要:
采用静态暗箱-气相色谱法评估氮肥分别配施生物炭和硝化抑制剂对菜地生态系统综合温室效应(GWP)和温室气体排放强度(GHGI)的影响。共设置3个田间处理:尿素(U)、尿素配施生物炭(UB)和尿素配施硝化抑制剂双氰胺(UDCD)。结果表明:与U处理相比,UDCD处理分别显著降低了N2O排放通量和GWP的27.1%(P<0.05)和29.1%(P<0.05),而对CH4排放通量、蔬菜产量以及GHGI并没有显著影响。与U处理相比,UB处理对N2O排放通量、GWP和GHGI并无显著影响。与UB处理相比,UDCD处理分别显著降低了N2O排放通量和GWP的28.3%(P<0.05)和29.1%(P<0.05)。综合对比3种施肥方式的GWP和GHGI,发现氮肥配施硝化抑制剂DCD可以显著减少氮肥对环境的影响,因此在菜地可推荐使用尿素配施硝化抑制剂双氰胺(UDCD)施肥方案。
Abstract:
Static opaque chamber-gas chromatography method was used to study the effects of nitrogen fertilizer combined with biochar and nitrification inhibitor respectively, on the global warming potential (GWP) and greenhouse gas intensity (GHGI) of ecosystem in vegetable field. Three following field treatments were set up: urea (U), urea combined with biochar (UB) and urea combined with nitrification inhibitor dicyandiamide (UDCD). The results showed that compared with U treatment, UDCD treatment significantly decreased the N2O emission flux and GWP by 27.1% (P<0.05) and 29.1% (P<0.05) respectively, but there were no significant effects on CH4 emission flux, vegetable yield and GHGI. Compared with U treatment, UB treatment had no significant effects on N2O emission flux, GWP and GHGI. Compared with UB treatment, UDCD treatment significantly decreased N2O emission flux and GWP by 28.3% (P<0.05) and 29.1% (P<0.05), respectively. The nitrogen fertilizer combined with DCD is recommended for reducing the effect of nitrogen fertilizer on environment significantly by comprehensive comparison of GWP and GHGI under three fertilization modes. Therefore, the UDCD fertilizing scheme is recommend in vegetable field.

参考文献/References:

[1]纪梦梦,吴晓刚,吴欣欣,等. 过量施肥对设施菜田土壤菌群结构及N2O产生的影响[J]. 微生物学通报, 2018, 45(6): 1452-1459.
[2]Intergovernmental Panel on Climate Change (IPCC). Climate change 2013: the physical science basis[R]. Cambridge: Cambridge University Press, 2013.
[3]WANG J Y, XIONG Z Q, YAN X Y. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China [J]. Atmospheric Environment, 2011, 45: 6923-6929.
[4]李博,李巧玲,范长华,等. 施用生物炭与硝化抑制剂对菜地综合温室效应的影响[J]. 应用生态学报, 2014, 25(9): 2651-2657.
[5]易琼,逄玉万,张木,等. 不同施肥模式下硝化抑制剂DCD与生物炭对菜地N2O排放和土壤特性的影响[J]. 生态环境学报, 2017, 26(8):1336-1341.
[6]ZHANG A F, CHENG G, QAISER H, et al. Contrasting effects of straw and straw-derived biochar application on net global warming potential in the Loess Plateau of China [J]. Field Crops Research, 2017, 205: 45-54.
[7]陈晨,许欣,毕智超,等.生物炭和有机肥对菜地土壤N2O排放及硝化、反硝化微生物功能基因丰度的影响[J]. 环境科学学报, 2017, 37(5): 1912-1920.
[8]CAYUELA M L, VAN ZWIETEN L, SINGH B P, et al. Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis [J]. Agriculture Ecosystems and Environment, 2014, 191: 5-16.
[9]GUO Y J, DI H J, CAMERON K C, et al. Effect of 7-year application of a nitrification inhibitor, dicyandiamide (DCD), on soil microbial biomass, protease and deaminase activities, and the abundance of bacteria and archaea in pasture soils[J]. Journal of Soils and Sediments, 2013, 13(4): 753-759.
[10]DI T, ZHANG Y Y, ZHOU Y Z, et al. Effect of nitrification inhibitors on mitigating N2O and NO emissions from an agricultural field under drip fertigation in the North China Plain [J]. Science of the Total Environment, 2017, 598: 87-96.
[11]HUSSAIN M, FAROOQ M, NAWAZ A, et al. Biochar for crop production: potential benefits and risks [J]. Journal of Soils and Sediments, 2017, 17(3): 685-716.
[12]KONG X, ERIKSEN J, PETERSEN S. Evaluation of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) for mitigating soil N2O emissions after grassland cultivation [J]. Agriculture Ecosystems and Environment, 2018, 259: 174-183.
[13]MAUCIERI C, ZhANG Y, MCDANIEL M D, et al. Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting [J]. Geoderma, 2017, 307: 267-276.
[14]ZHANG A, CUI L, PAN G, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice Paddy from Tai Lake Plain, China [J]. Agriculture Ecosystems and Environment, 2010, 139: 469-475.
[15]CASE S D C, MCNAMARA N P, REAY D S, et al. Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop? [J]. GCB Bioenergy, 2014, 6: 76-89.
[16]熊舞,夏永秋,周伟,等. 菜地氮肥用量与N2O排放的关系及硝化抑制剂效果[J]. 土壤学报, 2013, 50(4):743-751.
[17]FRIEDL J, SCHEER C, ROWLINGS D W, et al. The nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) reduces N2 emissions from intensively managed pastures in subtropical Australia [J]. Soil Biology Biochemistry, 2017, 108:55-64.
[18]ASING J, SAGGAR S, SINGH J, et al. Assessment of nitrogen losses from urea and an organic manure with and without nitrification inhibitor, dicyandiamide, applied to lettuce under glasshouse conditions [J]. Soil Research, 2008, 46(7): 535-541.
[19]KHAN S, WANG N, REID B J, et al. Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar [J]. Environmental Pollution, 2013, 175: 64-68.
[20]李露,周自强,潘晓健,等.氮肥与生物炭施用对稻麦轮作系统甲烷和氧化亚氮排放的影响[J].植物营养与肥料学报, 2015, 21(5): 1095-1103.
[21]WEISKE A, BENCKISER G, HERBERT T, et al. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dyciandiamide (DCD) on nitrous oxide, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments [J]. Biology and Fertility of Soils, 2001, 34: 109-117.
[22]LI B, BI Z C, XIONG Z Q. Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China [J]. GCB Bioenergy,2016, 9: 400-413.
[23]ZHANG D, PAN G, WU G, et al. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol [J]. Chemosphere, 2016, 142: 106-113.
[24]张洋,李雅颖,郑宁国,等. 生物硝化抑制剂的抑制原理及其研究进展[J]. 江苏农业科学,2019,47(1):21-26.
[25]FAN C, LI B, XIONG Z Q. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China [J]. Science of the Total Environment, 2018, 612: 480-489.
[26]ABALOS D, JEFFRY S, SANZ-CORBINA A, et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency [J]. Agriculture Ecosystems and Environment, 2014, 189:136-144.

相似文献/References:

[1]兰 天,张 辉,刘 源,等.玉米秸秆生物炭对Pb2+、Cu2+的吸附特征与机制[J].江苏农业学报,2016,(02):368.[doi:10.3969/j.issn.1000-4440.2016.02.021]
 LAN Tian,ZHANG Hui,LIU Yuan,et al.Adsorption characteristics and mechanisms of Pb2+ and Cu2+ on corn straw biochar[J].,2016,(05):368.[doi:10.3969/j.issn.1000-4440.2016.02.021]
[2]周运来,张振华,范如芹,等.秸秆还田方式对水稻田土壤理化性质及水稻产量的影响[J].江苏农业学报,2016,(04):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
 ZHOU Yun-lai,ZHANG Zhen-hua,FAN Ru-qin,et al.Effects of straw-returning modes on paddy soil properties and rice yield[J].,2016,(05):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
[3]刘杰,韩士群,齐建华,等.生物碳含量对底泥活化原位脱氮及微生物活性的影响[J].江苏农业学报,2016,(01):106.[doi:10.3969/j.issn.1000-4440.2016.01.016 ]
 LIU Jie,HAN Shi-qun,QI Jian-hua,et al.Influence of biochar content on in-situ denitrification of sediment and microbial activity[J].,2016,(05):106.[doi:10.3969/j.issn.1000-4440.2016.01.016 ]
[4]乔光,田田,洪怡,等.生物炭对玛瑙红樱桃生长、果实品质及土壤矿质元素的影响[J].江苏农业学报,2017,(04):904.[doi:doi:10.3969/j.issn.1000-4440.2017.04.027]
 QIAO Guang,TIAN Tian,HONG Yi,et al.Effects of biochar on growth and fruit quality of Prunus pseudocerasu Manaohong and mineral element contents in soil[J].,2017,(05):904.[doi:doi:10.3969/j.issn.1000-4440.2017.04.027]
[5]尹微琴,孟莉蓉,郁彬琦,等.垫料生物炭对土壤镉的钝化作用[J].江苏农业学报,2018,(01):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
 YIN Wei-qin,MENG Li-rong,YU Bin-qi,et al.Passivation of Cd in soil by bedding materials derived-biochar[J].,2018,(05):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
[6]范如芹,罗佳,张振华.复合调理剂对栽培基质性能及蔬菜生长的影响[J].江苏农业学报,2018,(04):887.[doi:doi:10.3969/j.issn.1000-4440.2018.04.025]
 FAN Ru-qin,LUO Jia,ZHANG Zhen-hua.Effects of composite conditioner on properties of soilless conditioner and vegetable growth[J].,2018,(05):887.[doi:doi:10.3969/j.issn.1000-4440.2018.04.025]
[7]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
 DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(05):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[8]范如芹,周运来,李赟,等.秸秆发酵还田提升土壤腐殖质含量与品质[J].江苏农业学报,2019,(05):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
 FAN Ru-qin,ZHOU Yun-lai,LI Yun,et al.Straw fermentation incorporation improves soil humus content and quality[J].,2019,(05):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
[9]张晟,张徐洁,赵远,等.不同温度制备的水稻秸秆生物炭对稻田土壤固碳减排及微生物群落结构的影响[J].江苏农业学报,2019,(05):1102.[doi:doi:10.3969/j.issn.1000-4440.2019.05.015]
 ZHANG Sheng,ZHANG Xu-jie,ZHAO Yuan,et al.Effects of rice straw biochar prepared at different pyrolysis temperatures on carbon sequestration and mitigation and microbial community structure in paddy soil[J].,2019,(05):1102.[doi:doi:10.3969/j.issn.1000-4440.2019.05.015]
[10]涂保华,胡茜,张艺,等.基于不同类型秸秆制备的生物炭对稻田土壤温室气体排放的影响[J].江苏农业学报,2019,(06):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]
 TU Bao-hua,HU Qian,ZHANG Yi,et al.Effects of biochar based on different types of straw on greenhouse gas emission from paddy soil[J].,2019,(05):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]

备注/Memo

备注/Memo:
收稿日期:2020-07-23基金项目:国家重点研发计划项目(2018YFD0201203);国家自然科学基金项目(41501245)作者简介:李佳(1998-),男,甘肃武威人,本科,研究方向为农田温室气体排放。(E-mail)20171342020@nuist.edu.cn通讯作者:孙丽英,(E-mail)sunliying@nuist.edu.cn
更新日期/Last Update: 2020-11-16