参考文献/References:
[1]徐俊增,彭世彰,丁加丽,等. 基于蒸渗仪实测数据的日参考作物蒸发腾发量计算方法评价[J]. 水利学报, 2010, 41(12):1497-1505.
[2]冯禹,崔宁博,龚道枝,等. 基于极限学习机的参考作物蒸散量预测模型[J].农业工程学报,2015,31(S1):153-160.
[3]李晨,崔宁博,冯禹,等. 四川省不同区域参考作物蒸散量计算方法的适用性评价[J].农业工程学报,2016,32(4):127-134,316.
[4]ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration:Guidelines for computing crop water requirements[M]. Rome:FAO Irrigation and Drainage Paper 56,1998:1-15.
[5]FAN J L, YUE W J, WU L F, et al. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China[J]. Agricultural and Forest Meteorology, 2018,263: 225-241.
[6]WU L F, FAN J L. Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration [J]. PLoS One,2019,14(5): e0217520.
[7]KISI O. Applicability of Mamdani and Sugeno fuzzy genetic approaches for modeling reference evapotranspiration[J]. Journal of Hydrology, 2013, 504: 160-170.
[8]SHIH S F, SNYDER G H. Leaf area index and evapotranspiration of taro[J]. Agronomy Journal, 1985, 77(4):554-556.
[9]彭世彰,徐俊增. 参考作物蒸发蒸腾量计算方法的应用比较[J]. 灌溉排水学报, 2004,23(6):5-9.
[10]IRMAK S, IRMAK A, ALLEN R G, et al. Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates[J]. Journal of Irrigation and Drainage Engineering, 2003, 129(5): 336-347.
[11]PRIESTLEY C H B, TAYLO R J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Mon Weather Rev, 1972,100:81-92.
[12]HARGREAVES G H, SAMANI Z A. Reference crop evapotranspiration from temperature[J]. Appl Eng Agric, 1985,1:96-99.
[13]KISI O. Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree[J]. J Hydrol,2015,528: 312-320.
[14]WANG L, KISI O, Zounemat-Kermani M, et al. Pan evaporation modeling using six different heuristic computing methods in different climates of China[J]. J Hydrol, 2017,544: 407-427.
[15]JOVIC S, NEDELJKOVIC B, GOLUBOVIC Z, et al. Evolutionary algorithm for reference evapotranspiration analysis[J]. Comput Electron Agric,2018,150: 1-4.
[16]LANDERAS G, ORTIZ-BARREDO A, LO′PEZ J J. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain) [J]. Agric Water Manag,2008,95: 553-565.
[17]FENG Y, CUI N B, ZHAO L, et al. Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China[J]. Journal of Hydrology, 2016, 536: 376-383.
[18]MOUSAVI R, SABZIPARVAR A A, MAROFI S, et al. Calibration of the Angstrm-Prescott solar radiation model for accurate estimation of reference evapotranspiration in the absence of observed solar radiation[J]. Theoretical and Applied Climatology, 2015, 119(1/2):43-54.
[19]LADLANI I, HOUICHI L, DJEMILI L, et al. Estimation of daily reference evapotranspiration (ET0) in the North of Algeria using adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) models: A comparative study[J]. Arabian Journal for Science and Engineering, 2014, 39(8):5959-5969.
[20]KUMAR M, RAGHUWANSHI N S, SINGH R, et al. Estimating evapotranspiration using artificial neural networks[J]. Journal of Irrigation and Drainage Engineering, 2002, 128(4): 224-233.
[21]张皓杰,崔宁博,徐颖,等. 基于ELM的西北旱区参考作物蒸散量预报模型[J]. 排灌机械工程学报, 2018, 36 (8):140-145.
[22]TRAORE S, WANG Y M, KERH T. Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone[J]. Agricultural Water Management, 2010, 97(5): 707-714.
[23]TABARI H, KISI O, EZANI A, et al. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment[J]. Journal of Hydrology, 2012, 777: 78-89.
[24]ABDULLAH S S, MALEK M A, ABDULLAH N S, et al. Extreme learning machines: A new approach for prediction of reference evapotranspiration[J]. Journal of Hydrology, 2015, 527:184-195.
[25]HASSAN M A, KHALIL A, KASEB S, et al. Potential of four different machine-learning algorithms in modeling daily global solar radiation[J]. Renewable Energy, 2017, 111:52-62.
[26]FAN J, WANG X, WU L, et al. Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China[J]. Energy Conversion & Management, 2018, 164:102-111.
[27]于玲,吴铁军. 集成学习:Boosting算法综述[J]. 模式识别与人工智能, 2004, 17(1):52-59.
[28]HASTIE T, TIBSHIRANI R, FRIEDMAN J. Ensemble Learning[M]//HASTIE T, TIBSHIRANI R, FRIEDMAN J. The Elements of Statistical Learning. Springer Series in Statistics. New York, NY: Springer, 2009: 605-624.
[29]BAUER E, KOHAVI R. An Empirical comparison of voting classification algorithms: Bagging, Boosting, and Variants[J]. Machine Learning, 1999, 36(1/2):105-139.
[30]DIETTERICH T G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, Boosting, and Randomization[J]. Machine Learning, 2000, 40(2):139-157.
[31]MANIKUMARI N, MURUGAPPAN A, VINODHINI G. Time series forecasting of daily reference evapotranspiration by neural network ensemble learning for irrigation system[J]. IOP Conference Series: Earth and Environmental Science, 2017, 80:012069.
[32]FENG Y, CUI N, GONG D, et al. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling[J]. Agric Water Manage,2017, 193:163-173.
[33]王升,付智勇,陈洪松,等.基于随机森林算法的参考作物蒸发蒸腾量模拟计算[J].农业机械学报,2017,48(3):302-309.
[34]韩启迪,张小桐,申维.基于梯度提升决策树(GBDT)算法的岩性识别技术[J].矿物岩石地球化学通报,2018,37(6):1173-1180.
[35]郑凯文,杨超.基于迭代决策树(GBDT)短期负荷预测研究[J].贵州电力技术,2017,20(2):82-84,90.
[36]蔡文学,罗永豪,张冠湘,等.基于GBDT与Logistic回归融合的个人信贷风险评估模型及实证分析[J].管理现代化,2017,37(2):1-4.
[37]GORDON R B A D. Classification and regression trees[J]. Biometrics, 1984, 40(3):874.
[38]EVERITT B S. Classification and regression trees[M]//GOLDBERG J, FISCHER M. Encyclopedia of Statistics in Behavioral Science. Hoboken, NJ, USA:John Wiley& Sons, Ltd., 2005.
[39]BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45(1):5-32.
[40]FRIEDMAN J H. Stochastic gradient boosting[J].Computational Statistics and Data Analysis,2002,38(4):367-378.
[41]汪彪,曾新民,刘正奇,等. 中国西北地区参考作物蒸散量的估算与变化特征[J]. 干旱气象, 2016, 34(2):243-251.
[42]冯禹,崔宁博,魏新平,等. 川中丘陵区参考作物蒸散量时空变化特征与成因分析[J].农业工程学报, 2014,30(14):78-86,339.