[1]李奇生,赵成萍,尹子琴,等.均衡FCM算法在农作物遥感影像解译中的应用[J].江苏农业学报,2020,(05):1163-1168.[doi:doi:10.3969/j.issn.1000-4440.2020.05.013]
 LI Qi-sheng,ZHAO Cheng-ping,YIN Zi-qin,et al.Application of balanced FCM algorithm on the interpretation of crops remote sensing image[J].,2020,(05):1163-1168.[doi:doi:10.3969/j.issn.1000-4440.2020.05.013]
点击复制

均衡FCM算法在农作物遥感影像解译中的应用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年05期
页码:
1163-1168
栏目:
耕作栽培·资源环境
出版日期:
2020-10-31

文章信息/Info

Title:
Application of balanced FCM algorithm on the interpretation of crops remote sensing image
作者:
李奇生1赵成萍1尹子琴2李博3周新志1
(1.四川大学电子信息学院,四川成都610065;2.云南省云计算学会,云南昆明650032;3.四川大学水利水电学院,四川成都610065)
Author(s):
LI Qi-sheng1ZHAO Cheng-ping1YIN Zi-qin2LI Bo3ZHOU Xin-zhi1
(1.College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China;2.Cloud-computing Academic Society of Yunnan Province, Kunming 650032, China;3.College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China)
关键词:
均衡C-均值聚类算法(均衡FCM算法)混合像元面积提取图像分类
Keywords:
fuzzy C-means clustering algorithm based on balanced data sets(BDS-FCM algorithm)mixed pixelarea extractionimage classification
分类号:
S127
DOI:
doi:10.3969/j.issn.1000-4440.2020.05.013
文献标志码:
A
摘要:
针对传统的模糊C-均值聚类算法(FCM算法)对大数据集收敛速度慢,聚类不均匀类别样本时出现大类吃小类现象以及对初始聚类中心点要求高等问题,提出了一种基于均衡样本集思想的模糊C-均值聚类算法(均衡FCM算法)。选取Landsat8、Sentinel2A遥感卫星采集获得的哈尔滨市宾县2018年遥感图像,验证方法的有效性。结果显示,提出的均衡FCM算法可以改善传统FCM算法存在的问题,验证了均衡FCM算法的有效性。
Abstract:
To solve the conventional fuzzy C-means clustering algorithm(FCM algorithm) problems including slow convergence speed for large data sets, the occurrence of neglect of smaller clustered groups when the clustering categories are uneven, and high requirement on the initial clustering center points, this paper proposed a fuzzy clustering algorithm model based on balanced data sets (BDS-FCM algorithm). To verify the effectiveness, the remote sensing images of Bin County, Harbin City collected by Landsat8 and Sentinel2A remote sensing satellites in 2018 was selected as experimental subjects. Results of the experiment show that the proposed BDS-FCM algorithm can improve the conventional FCM algorithm and verify the effectiveness of BDS-FCM.

参考文献/References:

[1]LI Q, LAN H, ZHAO X, et al. River centerline extraction using the multiple direction integration algorithm for mixed and pure water pixels[J]. GIScience & Remote Sensing, 2019, 56(2): 256-281.
[2]XIAN-CHUAN Y, XIAO-FENG C, HENG-ZHI C, et al. Mixed-Pixel decomposition of SAR images based on single-pixel ICA with selective members[J]. GIScience & Remote Sensing, 2011, 48(1): 130-140.
[3]KAVZOGLU T, REIS S. Performance analysis of maximum likelihood and artificial neural network classifiers for training sets with mixed pixels[J]. GIScience & Remote Sensing, 2008, 45(3): 330-342.
[4]孟令奎,李晓香,张文. 植被覆盖区VIIRS与MODIS遥感指数的相关性[J]. 江苏农业学报, 2018,34(3):570-577.
[5]SON N T, CHEN C F, CHEN C R, et al. AssBDSment of Sentinel-1A data for rice crop classification using random forests and support vector machines[J]. Geocarto International, 2018, 33(6): 587-601.
[6]何瑞银,沈明霞,从静华,等. 植被信息提取过程中ETM+遥感影像的分类方法[J]. 江苏农业学报, 2008, 24(1):29-32.
[7]KAI W, JUN Z, GUOFENG Z. Early estimation of winter wheat planting area in Qingyang city by decision tree and pixel Unmixing methods based on GF-1 satellite data[J]. Remote Sensing Technology and Application, 2018, 33(1): 158-167.
[8]MAHELA O P, SHAIK A G. Recognition of power quality disturbances using S-transform based ruled decision tree and fuzzy C-means clustering classifiers[J]. Applied Soft Computing, 2017, 59: 243-257.
[9]LIANG-QUN L, WEI-XIN X, ZONG-XIANG L. A novel quadrature particle filtering based on fuzzy c-means clustering[J]. Knowledge-Based Systems, 2016, 106: 105-115.
[10]KAUR S, BANSAL R K, MITTAL M, et al. Mixed pixel decomposition based on extended fuzzy clustering for single spectral value remote sensing images[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(3): 427-437.
[11]QIU C, XIAO J, HAN L, et al. Enhanced interval type-2 fuzzy c-means algorithm with improved initial center[J]. Pattern Recognition Letters, 2014, 38: 86-92.
[12]KRINIDIS S, CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image ProcBDSing, 2010, 19(5): 1328-1337.
[13]ZHANG H, SHI W, HAO M, et al. An adaptive spatially constrained fuzzy c-means algorithm for multispectral remotely sensed imagery clustering[J]. International Journal of Remote Sensing, 2018, 39(8): 2207-2237.
[14]BUI Q T, NGUYEN Q H, PHAM V M, et al. A novel method for multispectral image classification by using social spider optimization algorithm integrated to fuzzy C-mean clustering[J]. Canadian Journal of Remote Sensing, 2019, 45(1): 42-53.
[15]HONGLEI Y, JUNHUAN P, BAIRU X, et al. Remote sensing classification using fuzzy C-means clustering with spatial constraints based on Markov random field[J]. European Journal of Remote Sensing, 2013, 46(1): 305-316.
[16]成胜权. 基于RS和GIS的宾县土地利用和土壤侵蚀的定量研究[J]. 水利科技与经济, 2012, 18(9):100.

备注/Memo

备注/Memo:
收稿日期:2019-11-08基金项目:国家自然科学基金项目(U1933123)作者简介:李奇生(1996-),男,河南洛阳人,硕士研究生,研究方向为模式识别与智能系统。(E-mail)563692411@qq.com通讯作者:赵成萍,(E-mail)sc_zcp@scu.edu.cn
更新日期/Last Update: 2020-11-16