[1]陶惠林,冯海宽,徐良骥,等.基于无人机高光谱遥感数据的冬小麦生物量估算[J].江苏农业学报,2020,(05):1154-1162.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
 TAO Hui-lin,FENG Hai-kuan,XU Liang-ji,et al.Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)[J].,2020,(05):1154-1162.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
点击复制

基于无人机高光谱遥感数据的冬小麦生物量估算()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年05期
页码:
1154-1162
栏目:
耕作栽培·资源环境
出版日期:
2020-10-31

文章信息/Info

Title:
Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)
作者:
陶惠林1234冯海宽134徐良骥2杨贵军134杨小冬134苗梦珂134刘明星134
(1.农业农村部农业遥感机理与定量遥感重点实验室,北京农业信息技术研究中心,北京100097;2.安徽理工大学测绘学院,安徽淮南232001;3.国家农业信息化工程技术研究中心,北京100097;4.北京市农业物联网工程技术研究中心,北京100097)
Author(s):
TAO Hui-lin1234FENG Hai-kuan134XU Liang-ji2YANG Gui-jun134YANG Xiao-dong134MIAO Meng-ke134LIU Ming-xing134
(1.Key Laboratory of Quantitative Remote Sensing in Agriculture, Ministry of Agriculture and Rural Affairs, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China;2.School of Geodesy and Geomatics, Anhui University of Science and Technology, Huainan 232001, China;3.National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China;4.Beijing Engineering Research Center for Agricultural Internet of Things, Beijing 100097, China)
关键词:
无人机高光谱冬小麦多元线性回归植被指数红边参数
Keywords:
unmanned aerial vehicle(UAV)hyperspectralwinter wheatmultiple linear regressionvegetation indexred edge parameters
分类号:
S127
DOI:
doi:10.3969/j.issn.1000-4440.2020.05.012
文献标志码:
A
摘要:
以植被指数和红边参数为模型因子,利用多元线性回归(MLR),构建冬小麦不同生育期的生物量估算模型,从而有效和更好地监测冬小麦的长势情况,为精准农业中作物的快速监测提供技术手段。首先分析植被指数(VI)和红边参数(REPS)与冬小麦生物量的相关性,然后运用MLR分别建立模型MLR+VI、MLR+REPS和MLR+VI+REPS,最后将优选的冬小麦生物量估算模型应用于无人机高光谱影像中,验证模型的可行性。结果表明,利用单个植被指数或红边参数构建的估算模型在孕穗期、开花期和灌浆期估算精度最高的植被指数分别是归一化植被指数(NDVI)、简单比值指数(SR)和增强型土壤调节植被指数(MSAVI),精度最高的红边参数分别为红边振幅/最小振幅、红边振幅和红边振幅;通过MLR分别以植被指数、红边参数和植被指数结合红边参数为因子构建的模型MLR+VI、MLR+REPS与MLR+VI+REPS效果优于单个植被指数或红边参数建立的模型,3种模型在不同生育期的验证结果也较好,其中MLR+VI+REPS模型精度最高,模型决定系数(R2)、标准均方根误差(NRMSE)分别为0.783 2与12.13%。
Abstract:
Using vegetation index (VI) and red edge parameter (REPS) as model factors, multivariate linear regression (MLR) was used to construct a biomass estimation model for winter wheat in different growth periods, to effectively and better monitor the growth of winter wheat and provide technical means for rapid monitoring of crops in precision agriculture. The correlation of VI and REPS with biomass of winter wheat was analyzed first. Then MLR+VI model, MLR+REPS model and MLR+VI+REPS model were constructed by MLR respectively. Finally, the optimized model for estimation of biomass in winter wheat was applied in hyperspectral images taken by unmanned aerial vehicles to verify the feasibility of the models. The results showed that the vegetation indices with the highest estimation accuracy of the estimation model constructed by single vegetation index or red edge parameter in booting stage, flowering stage and filling stage were normalized difference vegetation index (NDVI), simple ratio index (SR) and modified soil-adjusted vegetation index (MSAVI) respectively, and the red edge parameters with the highest precision were red edge amplitude/minimum amplitude, red edge amplitude and red edge amplitude respectively. The effects of MLR+VI model, MLR+REPS model and MLR+VI+REPS model were better than the models constructed by single vegetation index or single red edge parameter. The verification results of the MLR+VI model, MLR+REPS model and MLR+VI+REPS model in different growth periods were also good, and the MLR+VI+REPS model showed the highest precision, the coefficient of determination (R2) and normalized root mean square error (NRMSE) of the model were 0.783 2 and 12.13% respectively.

参考文献/References:

[1]王秀珍,黄敬峰,李云梅,等.水稻地上鲜生物量的高光谱遥感估算模型研究[J]. 作物学报, 2003, 29(6): 815-821.
[2]姚阔,郭旭东,南颖,等.植被生物量高光谱遥感监测研究进展[J]. 测绘科学, 2016(8): 48-53.
[3]GNYP M L, MIAO Y X, FEI Y, et al. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages[J]. Field Crops Research, 2014, 155(155):42-55.
[4]卢小平,王双亭. 遥感原理与方法[M]. 北京: 测绘出版社, 2012.
[5]王备战,冯晓,温暖,等. 基于SPOT-5影像的冬小麦拔节期生物量及氮积累量监测[J]. 中国农业科学, 2012, 45(15): 3049-3057.
[6]李卫国,赵春江,王纪华,等. 基于卫星遥感的冬小麦拔节期长势监测[J]. 麦类作物学报, 2007, 27(3): 523-527.
[7]史舟,梁宗正,杨媛媛,等.农业遥感研究现状与展望[J]. 农业机械学报, 2015, 46(2): 247-260.
[8]潘海珠,陈仲新. 无人机高光谱遥感数据在冬小麦叶面积指数反演中的应用[J]. 中国农业资源与区划, 2018, 39(3): 32-37.
[9]YUE J B, FENG H K, YANG G J, et al. A Comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy[J]. Remote Sensing, 2018, 10(2):66.
[10]YUE J B, FENG H K, JIN X L, et al. A Comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-defifinition digital camera[J]. Remote Sensing, 2018,10:1138.
[11]刘伟东,项月琴,郑兰芬,等. 高光谱数据与水稻叶面积指数及叶绿素密度的相关分析[J].遥感学报, 2000,4(4): 279-283.
[12]刘占宇,黄敬峰,吴新宏,等. 草地生物量的高光谱遥感估算模型[J]. 农业工程学报, 2006, 22(2): 111-115.
[13]蒙诗栎,庞勇,张钟军,等. WorldView-2纹理的森林地上生物量反演[J]. 遥感学报, 2017,21(5): 812-824.
[14]BAO Y, GAO W, GAO Z. Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolutions[J]. Frontiers of Earth Science in China, 2009, 3(1):118.
[15]PSOMAS A, KNEUBUEHLER M, HUBER S, et al. Hyperspectral remote sensing for estimating aboveground biomass and for exploring species richness patterns of grassland habitats[J]. International Journal of Remote Sensing, 2011, 32(24):9007-9031.
[16]肖武,陈佳乐,笪宏志,等. 基于无人机影像的采煤沉陷区玉米生物量反演与分析[J]. 农业机械学报, 2018, 49(8): 169-180.
[17]陆国政,杨贵军,赵晓庆,等. 基于多载荷无人机遥感的大豆地上鲜生物量反演[J]. 大豆科学, 2017(1): 41-50.
[18]TAO H L, FENG H K, XU L J,et al. Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data[J]. Sensors, 2020,20(5):1296.
[19]WU C Y, NIU Z, TANG Q, et al. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J]. Agricultural and Forest Meteorology, 2008, 148(8/9): 1241.
[20]PENUELAS J, ISLA R, FILELLA I, et al. Visible and near-infrared reflectance assessment of salinity effects on barley[J]. Crop Science, 1997, 37(1):198-202.
[21]GONG P, PU R, BIGING G S, et al. Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1355-1362.
[22]HUETE A. Modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994, 48(2): 119-126.
[23]HABOUDANE D, MILLER J R, TREMBLAY N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002, 81(2): 416-426.
[24]APARICIO N, VILLEGAS D, ARAUS J L, et al. Relationship between growth traits and spectral vegetation indices in durum wheat[J]. Crop Sci, 2002, 42: 1547-1555.
[25]LIANG L, DI L P, ZHANG L P, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method[J]. Remote Sensing of Environment, 2015, 165: 123-134.
[26]冯伟,朱艳,姚霞,等.利用红边特征参数监测小麦叶片氮素积累状况[J]. 农业工程学报, 2009, 25(11): 194-201.
[27]高林,杨贵军,于海洋,等. 基于无人机高光谱遥感的冬小麦叶面积指数反演[J]. 农业工程学报, 2016, 32(22): 113-120.
[28]黄敬峰,王福民,王秀珍. 水稻高光谱遥感试验研究[M]. 杭州:浙江大学出版社, 2010: 25-31.
[29]FILELLA I, PENUELAS J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status[J]. International Journal of Remote Sensing, 1994, 15(7): 1459-1470.
[30]DAWSON T P, CURRAN P J. Technical note a new technique for interpolating the reflectance red edge position[J]. International Journal of Remote Sensing, 1998, 19(11): 2133-2139.
[31]TORRES-SANCHEZ J, LOPEZ-GRANADOS F, SERRANO N, et al. High-throughput 3-D monitoring of agricultural-tree plantations with unmanned aerial vehicle (UAV) technology[J]. PLoS One, 2015, 10(6):e0130479.
[32]李凤涛,鲁欣欣,王珍珍,等. 基于多光谱特征的玉米生物参量估算模型[J]. 青岛农业大学学报(自然科学版), 2014, 31(3): 196-198.
[33]刘明,冯锐,纪瑞鹏,等. 基于MODIS-NDVI的春玉米叶面积指数和地上生物量估算[J]. 中国农学通报, 2014, 31(6): 80-87.
[34]张静静,周卫红,邹萌萌,等. 高光谱遥感监测大面积土壤重金属污染的研究现状、原理及展望[J].江苏农业科学,2018,46(12):9-13.
[35]牛鲁燕,张晓艳,郑纪业,等. 葡萄叶片叶绿素含量高光谱估测模型研究[J].山东农业科学,2018, 50(7):152-156.
[36]芦兵,孙俊,杨宁,等. 基于SAGA-SVR预测模型的水稻种子水分含量高光谱检测[J].南方农业学报,2018,49(11):2342-2348.
[37]王卓卓,何英彬,罗善军,等. 基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,34(5):1036-1041.
[38]宋开山,张柏,李方,等. 高光谱反射率与大豆叶面积及地上鲜生物量的相关分析[J]. 农业工程学报, 2005, 21(1): 36-40.

相似文献/References:

[1]刘志刚,徐勤超.基质破碎度对光谱法检测基质含水率的影响[J].江苏农业学报,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
 LIU Zhi-gang,XU Qin-chao.Influences of substrate fragmentation degree on substrate water contents detected by hyper-spectral technology[J].,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
[2]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
 WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[3]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
 ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
[4]芦兵,孙俊,毛罕平,等.高光谱和图像特征相融合的生菜病害识别[J].江苏农业学报,2018,(06):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
 LU Bing,SUN Jun,MAO Han-ping,et al.Disease recognition of lettuce with feature fusion based on hyperspectrum and image[J].,2018,(05):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
[5]于堃,单捷,王志明,等.无人机遥感技术在小尺度土地利用现状动态监测中的应用[J].江苏农业学报,2019,(04):853.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
 YU Kun,SHAN Jie,WANG Zhi ming,et al.Land use status monitoring in small scale by unmanned aerial vehicles (UAVs) observations[J].,2019,(05):853.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
[6]王婷,刘振华,彭一平,等.华南地区土壤有机质含量高光谱反演[J].江苏农业学报,2020,(02):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
 WANG Ting,LIU Zhen-hua,PENG Yi-ping,et al.Predicting soil organic matter content in South China based on hyperspectral reflectance[J].,2020,(05):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
[7]朱淑鑫,杨宸,顾兴健,等.K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析[J].江苏农业学报,2020,(02):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
 ZHU Shu-xin,YANG Chen,GU Xing-jian,et al.K-means algorithm combined with successive projection algorithm for hyperspectral analysis of soil available potassium content[J].,2020,(05):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
[8]苗梦珂,王宝山,李长春,等.基于连续小波变换的冬小麦叶片最大净光合速率遥感估算[J].江苏农业学报,2020,(03):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
 MIAO Meng-ke,WANG Bao-shan,LI Chang-chun,et al.Remote sensing estimation of maximum net photosynthetic rate of winter wheat leaves based on continuous wavelet transform[J].,2020,(05):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
[9]张先洁,孙国祥,汪小旵,等.基于超像素特征向量的果树冠层分割方法[J].江苏农业学报,2021,(03):724.[doi:doi:10.3969/j.issn.1000-4440.2021.03.023]
 ZHANG Xian-jie,SUN Guo-xiang,WANG Xiao-chan,et al.Segmentation method of fruit tree canopy based on super pixel feature vector[J].,2021,(05):724.[doi:doi:10.3969/j.issn.1000-4440.2021.03.023]
[10]郭松,常庆瑞,郑智康,等.基于无人机高光谱影像的玉米叶绿素含量估测[J].江苏农业学报,2022,38(04):976.[doi:doi:10.3969/j.issn.1000-4440.2022.04.014]
 GUO Song,CHANG Qing-rui,ZHENG Zhi-kang,et al.Estimation of maize chlorophyll content based on unmanned aerial vehicle (UAV) hyperspectral images[J].,2022,38(05):976.[doi:doi:10.3969/j.issn.1000-4440.2022.04.014]

备注/Memo

备注/Memo:
收稿日期:2019-11-09基金项目:国家自然科学基金项目(41601346、41871333)作者简介:陶惠林(1994-),男,安徽铜陵人,硕士研究生,主要从事农业定量遥感研究。(E-mail)15755515505@163.com通讯作者:冯海宽,(E-mail)fenghaikuan123@163.com
更新日期/Last Update: 2020-11-16