参考文献/References:
[1]王秀珍,黄敬峰,李云梅,等.水稻地上鲜生物量的高光谱遥感估算模型研究[J]. 作物学报, 2003, 29(6): 815-821.
[2]姚阔,郭旭东,南颖,等.植被生物量高光谱遥感监测研究进展[J]. 测绘科学, 2016(8): 48-53.
[3]GNYP M L, MIAO Y X, FEI Y, et al. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages[J]. Field Crops Research, 2014, 155(155):42-55.
[4]卢小平,王双亭. 遥感原理与方法[M]. 北京: 测绘出版社, 2012.
[5]王备战,冯晓,温暖,等. 基于SPOT-5影像的冬小麦拔节期生物量及氮积累量监测[J]. 中国农业科学, 2012, 45(15): 3049-3057.
[6]李卫国,赵春江,王纪华,等. 基于卫星遥感的冬小麦拔节期长势监测[J]. 麦类作物学报, 2007, 27(3): 523-527.
[7]史舟,梁宗正,杨媛媛,等.农业遥感研究现状与展望[J]. 农业机械学报, 2015, 46(2): 247-260.
[8]潘海珠,陈仲新. 无人机高光谱遥感数据在冬小麦叶面积指数反演中的应用[J]. 中国农业资源与区划, 2018, 39(3): 32-37.
[9]YUE J B, FENG H K, YANG G J, et al. A Comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy[J]. Remote Sensing, 2018, 10(2):66.
[10]YUE J B, FENG H K, JIN X L, et al. A Comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-defifinition digital camera[J]. Remote Sensing, 2018,10:1138.
[11]刘伟东,项月琴,郑兰芬,等. 高光谱数据与水稻叶面积指数及叶绿素密度的相关分析[J].遥感学报, 2000,4(4): 279-283.
[12]刘占宇,黄敬峰,吴新宏,等. 草地生物量的高光谱遥感估算模型[J]. 农业工程学报, 2006, 22(2): 111-115.
[13]蒙诗栎,庞勇,张钟军,等. WorldView-2纹理的森林地上生物量反演[J]. 遥感学报, 2017,21(5): 812-824.
[14]BAO Y, GAO W, GAO Z. Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolutions[J]. Frontiers of Earth Science in China, 2009, 3(1):118.
[15]PSOMAS A, KNEUBUEHLER M, HUBER S, et al. Hyperspectral remote sensing for estimating aboveground biomass and for exploring species richness patterns of grassland habitats[J]. International Journal of Remote Sensing, 2011, 32(24):9007-9031.
[16]肖武,陈佳乐,笪宏志,等. 基于无人机影像的采煤沉陷区玉米生物量反演与分析[J]. 农业机械学报, 2018, 49(8): 169-180.
[17]陆国政,杨贵军,赵晓庆,等. 基于多载荷无人机遥感的大豆地上鲜生物量反演[J]. 大豆科学, 2017(1): 41-50.
[18]TAO H L, FENG H K, XU L J,et al. Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data[J]. Sensors, 2020,20(5):1296.
[19]WU C Y, NIU Z, TANG Q, et al. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J]. Agricultural and Forest Meteorology, 2008, 148(8/9): 1241.
[20]PENUELAS J, ISLA R, FILELLA I, et al. Visible and near-infrared reflectance assessment of salinity effects on barley[J]. Crop Science, 1997, 37(1):198-202.
[21]GONG P, PU R, BIGING G S, et al. Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1355-1362.
[22]HUETE A. Modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994, 48(2): 119-126.
[23]HABOUDANE D, MILLER J R, TREMBLAY N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002, 81(2): 416-426.
[24]APARICIO N, VILLEGAS D, ARAUS J L, et al. Relationship between growth traits and spectral vegetation indices in durum wheat[J]. Crop Sci, 2002, 42: 1547-1555.
[25]LIANG L, DI L P, ZHANG L P, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method[J]. Remote Sensing of Environment, 2015, 165: 123-134.
[26]冯伟,朱艳,姚霞,等.利用红边特征参数监测小麦叶片氮素积累状况[J]. 农业工程学报, 2009, 25(11): 194-201.
[27]高林,杨贵军,于海洋,等. 基于无人机高光谱遥感的冬小麦叶面积指数反演[J]. 农业工程学报, 2016, 32(22): 113-120.
[28]黄敬峰,王福民,王秀珍. 水稻高光谱遥感试验研究[M]. 杭州:浙江大学出版社, 2010: 25-31.
[29]FILELLA I, PENUELAS J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status[J]. International Journal of Remote Sensing, 1994, 15(7): 1459-1470.
[30]DAWSON T P, CURRAN P J. Technical note a new technique for interpolating the reflectance red edge position[J]. International Journal of Remote Sensing, 1998, 19(11): 2133-2139.
[31]TORRES-SANCHEZ J, LOPEZ-GRANADOS F, SERRANO N, et al. High-throughput 3-D monitoring of agricultural-tree plantations with unmanned aerial vehicle (UAV) technology[J]. PLoS One, 2015, 10(6):e0130479.
[32]李凤涛,鲁欣欣,王珍珍,等. 基于多光谱特征的玉米生物参量估算模型[J]. 青岛农业大学学报(自然科学版), 2014, 31(3): 196-198.
[33]刘明,冯锐,纪瑞鹏,等. 基于MODIS-NDVI的春玉米叶面积指数和地上生物量估算[J]. 中国农学通报, 2014, 31(6): 80-87.
[34]张静静,周卫红,邹萌萌,等. 高光谱遥感监测大面积土壤重金属污染的研究现状、原理及展望[J].江苏农业科学,2018,46(12):9-13.
[35]牛鲁燕,张晓艳,郑纪业,等. 葡萄叶片叶绿素含量高光谱估测模型研究[J].山东农业科学,2018, 50(7):152-156.
[36]芦兵,孙俊,杨宁,等. 基于SAGA-SVR预测模型的水稻种子水分含量高光谱检测[J].南方农业学报,2018,49(11):2342-2348.
[37]王卓卓,何英彬,罗善军,等. 基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,34(5):1036-1041.
[38]宋开山,张柏,李方,等. 高光谱反射率与大豆叶面积及地上鲜生物量的相关分析[J]. 农业工程学报, 2005, 21(1): 36-40.
相似文献/References:
[1]刘志刚,徐勤超.基质破碎度对光谱法检测基质含水率的影响[J].江苏农业学报,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
LIU Zhi-gang,XU Qin-chao.Influences of substrate fragmentation degree on substrate water contents detected by hyper-spectral technology[J].,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
[2]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[3]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
[4]芦兵,孙俊,毛罕平,等.高光谱和图像特征相融合的生菜病害识别[J].江苏农业学报,2018,(06):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
LU Bing,SUN Jun,MAO Han-ping,et al.Disease recognition of lettuce with feature fusion based on hyperspectrum and image[J].,2018,(05):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
[5]于堃,单捷,王志明,等.无人机遥感技术在小尺度土地利用现状动态监测中的应用[J].江苏农业学报,2019,(04):853.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
YU Kun,SHAN Jie,WANG Zhi ming,et al.Land use status monitoring in small scale by unmanned aerial vehicles (UAVs) observations[J].,2019,(05):853.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
[6]王婷,刘振华,彭一平,等.华南地区土壤有机质含量高光谱反演[J].江苏农业学报,2020,(02):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
WANG Ting,LIU Zhen-hua,PENG Yi-ping,et al.Predicting soil organic matter content in South China based on hyperspectral reflectance[J].,2020,(05):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
[7]朱淑鑫,杨宸,顾兴健,等.K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析[J].江苏农业学报,2020,(02):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
ZHU Shu-xin,YANG Chen,GU Xing-jian,et al.K-means algorithm combined with successive projection algorithm for hyperspectral analysis of soil available potassium content[J].,2020,(05):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
[8]苗梦珂,王宝山,李长春,等.基于连续小波变换的冬小麦叶片最大净光合速率遥感估算[J].江苏农业学报,2020,(03):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
MIAO Meng-ke,WANG Bao-shan,LI Chang-chun,et al.Remote sensing estimation of maximum net photosynthetic rate of winter wheat leaves based on continuous wavelet transform[J].,2020,(05):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
[9]张先洁,孙国祥,汪小旵,等.基于超像素特征向量的果树冠层分割方法[J].江苏农业学报,2021,(03):724.[doi:doi:10.3969/j.issn.1000-4440.2021.03.023]
ZHANG Xian-jie,SUN Guo-xiang,WANG Xiao-chan,et al.Segmentation method of fruit tree canopy based on super pixel feature vector[J].,2021,(05):724.[doi:doi:10.3969/j.issn.1000-4440.2021.03.023]
[10]郭松,常庆瑞,郑智康,等.基于无人机高光谱影像的玉米叶绿素含量估测[J].江苏农业学报,2022,38(04):976.[doi:doi:10.3969/j.issn.1000-4440.2022.04.014]
GUO Song,CHANG Qing-rui,ZHENG Zhi-kang,et al.Estimation of maize chlorophyll content based on unmanned aerial vehicle (UAV) hyperspectral images[J].,2022,38(05):976.[doi:doi:10.3969/j.issn.1000-4440.2022.04.014]