[1]黄鑫星,蒋家陆,罗沛,等.氨态氮浓度和收割频率对绿狐尾藻根系泌氧特性的影响[J].江苏农业学报,2020,(05):1112-1118.[doi:doi:10.3969/j.issn.1000-4440.2020.05.006]
 HUANG Xin-xing,JIANG Jia-lu,LUO Pei,et al.Effects of ammonia nitrogen concentration and harvesting frequency on radial oxygen loss characteristics of Myriophyllum aquaticum[J].,2020,(05):1112-1118.[doi:doi:10.3969/j.issn.1000-4440.2020.05.006]
点击复制

氨态氮浓度和收割频率对绿狐尾藻根系泌氧特性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年05期
页码:
1112-1118
栏目:
遗传育种·生理生化
出版日期:
2020-10-31

文章信息/Info

Title:
Effects of ammonia nitrogen concentration and harvesting frequency on radial oxygen loss characteristics of Myriophyllum aquaticum
作者:
黄鑫星12蒋家陆13罗沛1李红芳12张树楠1刘锋1何铁光4肖润林1吴金水12
(1.中国科学院亚热带农业生态研究所,亚热带农业生态过程重点实验室,长沙农业环境观测研究站,湖南长沙410125;2.中国科学院大学,北京100049;3.华中农业大学资源与环境学院,湖北武汉430070;4.广西壮族自治区农业科学院农业资源与环境研究所,广西南宁530007)
Author(s):
HUANG Xin-xing12JIANG Jia-lu13LUO Pei1LI Hong-fang12ZHANG Shu-nan1LIU Feng1HE Tie-guang4XIAO Run-Lin1WU Jin-shui12
(1.Institute of Subtropical Agriculture, Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Changsha 410125, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070;4.Agricultural Resources and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China)
关键词:
根系泌氧氨态氮收割频率绿狐尾藻
Keywords:
radial oxygen lossammonia nitrogenharvesting frequencyMyriophyllum aquaticum
分类号:
X171;X52
DOI:
doi:10.3969/j.issn.1000-4440.2020.05.006
文献标志码:
A
摘要:
植物根系泌氧特性对人工湿地微环境的状态以及污染物去除至关重要。本研究采用室内培养试验,分析0~200 mg/L氨态氮和2种收割频率下的绿狐尾藻根系泌氧特性,并探究植物株高、单株生物量、根孔隙度等对根系泌氧特性的影响。结果表明,经过29 d的培养,在0 mg/L、50 mg/L、100 mg/L和200 mg/L氨态氮处理下绿狐尾藻根系泌氧速率分别为8.6 μmol/(h·g)、14.1 μmol/(h·g)、14.6 μmol/(h·g)和7.7 μmol/(h·g)。除培养第15 d外,50 mg/L和100 mg/L氨态氮处理的绿狐尾藻根系泌氧速率随培养时间的增加而逐渐增加。收割处理会降低绿狐尾藻根系泌氧速率,根系泌氧速率表现为:未收割对照>14 d收割一次处理>7 d收割一次处理,收割频率高的绿狐尾藻根系泌氧速率较低。适宜的氨态氮质量浓度及收割频率有利于植物生长和恢复,过高的氨态氮质量浓度或收割频率会降低植物根孔隙度和株高,从而减少根系泌氧速率。相关性分析结果表明,绿狐尾藻根系泌氧速率与其根孔隙度、株高和单株生物量显著正相关(P<0.01),说明根系泌氧速率取决于作物自身生长状态和根系特征。在湿地运行管理中,适当调节进水氮负荷和植物收割频率有利于优化植物生长状况和根系泌氧特性,从而改善湿地环境。
Abstract:
The root radial oxygen loss characteristics of plants are important for the state of microenvironment and pollutant removal in constructed wetlands. In this study, an indoor incubation experiment was used to explore the radial oxygen loss characteristics of Myriophyllum aquaticum under the treatments of 0-200 mg/L ammonia nitrogen and two harvesting frequencies, and the effects of plant height, biomass of single plant and root porosity on the radial oxygen loss characteristics were analyzed. The results showed that after 29-day incubation, the radial oxygen loss rates of M. aquaticum treated with 0 mg/L, 50 mg/L, 100 mg/L and 200 mg/L ammonia nitrogen were 8.6 μmol/(h·g), 14.1 μmol/(h·g), 14.6 μmol/(h·g) and 7.7 μmol/(h·g), respectively. Expect for the 15th day of cultivation, the radial oxygen loss rate of M. aquaticum under 50 mg/L and 100 mg/L ammonia nitrogen treatments gradually increased with the increase of culture time. The rate of radial oxygen loss of M. aquaticum was decreased under harvesting treatment, and the radial oxygen loss rate followed the order of the non-harvesting >harvesting once every 14 days >harvesting once every seven days. The lower radial oxygen loss rate was observed in the higher harvesting frequency treatment. These results indicated that proper ammonia nitrogen concentration and harvesting frequency were conducive for plant growth and recovery. Too high ammonia nitrogen concentration or harvesting frequency could reduce the root porosity and plant height, thus reducing the rate of radial oxygen loss. Correlation analysis results indicated that the radial oxygen loss rate of M. aquaticum had a significantly positive correlation with root porosity, plant height and biomass of single plant (P<0.01), showing that the rate of radial oxygen loss depended on plant growth condition and root characteristics. Adjusting the influent nitrogen load and plant harvesting frequency is beneficial to optimize the plant growth status and radial oxygen loss characteristics and improve the wetland environment during the operation and management of constructed wetlands.

参考文献/References:

[1]VYMAZAL J. Constructed wetlands for wastewater treatment: five decades of experience[J]. Environmental Science & Technology, 2011, 45(1): 61-69.
[2]FITZ W J, WENZEL W W. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation[J]. Journal of Biotechnology, 2002, 99(3): 259-278.
[3]VISSER E J W, COLMER T D, BLOM C, et al. Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono-and dicotyledonous wetland species with contrasting types of aerenchyma[J]. Plant Cell and Environment, 2000, 23(11): 1237-1245.
[4]吴海明,张建,李伟江,等. 人工湿地植物泌氧与污染物降解耗氧关系研究[J]. 环境工程学报, 2010, 4(9): 1973-1977.
[5]LI Y L, WANG X X. Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and nitrification of two rice cultivars in Chinese red soil regions[J]. Plant and Soil, 2013, 365(1/2): 115-126.
[6]LAI W L, ZHANG Y, CHEN Z H. Radial oxygen loss, photosynthesis, and nutrient removal of 35 wetland plants[J]. Ecological Engineering, 2012, 39: 24-30.
[7]LAI W L, WANG S Q, PENG C L, et al. Root features related to plant growth and nutrient removal of 35 wetland plants[J]. Water Research, 2011, 45(13): 3941-3950.
[8]NORIO T, KENTARO Y, THIDAR A, et al. Effect of broken dead culms of Phragmites australis on radial oxygen loss in relation to radiation and temperature[J]. Hydrobiologia, 2007, 583(1): 165-172.
[9]INOUE T M, TSUCHIYA K. Interspecic differences in radial oxygen loss from the roots of three Typha species[J]. Limnology, 2008, 9(3): 207-211.
[10]黄丹萍,贺锋,肖蕾,等. 高氮磷胁迫下菖蒲(Acorus calamus Linn.)通气组织和根系释氧的响应[J]. 湖泊科学, 2012, 24(1): 83-88.
[11]刘锋,罗沛,刘新亮,等. 绿狐尾藻生态湿地处理污染水体的研究评述[J]. 农业现代化研究, 2018, 39(8): 1020-1029.
[12]刘少博,冉彬,曾冠军,等. 高铵条件下绿狐尾藻的生理与氮磷吸收特征[J]. 环境科学, 2017, 38(9): 3731-3737.
[13]LIU F, ZHANG S N, LUO P, et al. Purification and reuse of non-point source wastewater via Myriophyllum-based integrative biotechnology: a review[J]. Bioresource Technology, 2018, 248: 3-11.
[14]LUO P, LIU F, ZHANG S N, et al. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management[J]. Bioresource Technology, 2018, 258: 247-254.
[15]LUO P, LIU F, LIU X, et al. Phosphorus removal from lagoon-pretreated swine wastewater by pilot-scale surface flow constructed wetlands planted with Myriophyllum aquaticum[J]. Science of the Total Environment, 2017, 576: 490-497.
[16]WANG Q, XIE H J, ZHANG J, et al. Effect of plant harvesting on the performance of constructed wetlands during winter: radial oxygen loss and microbial characteristics[J]. Environmental Science and Pollution Research, 2015, 22(20): 7476-7484.
[17]KLUDZE H K, DELAUNE R D, PATRICK W H. Aerenchyma formation and methane and oxygen exchange in rice[J]. Soil Science Society of America Journal, 1993, 57(2): 386-391.
[18]KLUDZE H K, DELAUNE R D, PATRICK W H. A colorimetric method for assaying dissolved oxygen loss from container-grown rice roots[J]. Agronomy Journal, 1994, 86(3): 483-487.
[19]SUN H, WANG W, LI J, et al. Growth, oxidative stress responses, and gene transcription of juvenile bighead carp (Hypophthalmichthys nobilis) under chronic-term exposure of ammonia[J]. Environmental Toxicology and Chemistry, 2014, 33:1726-1731.
[20]MEI X Q, YANG Y, TAM N F Y, et al. Roles of root porosity, radial oxygen loss, Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater[J]. Water Research, 2014, 50:147-159.
[21]王霁虹,任鹏,马娜,等. 铵态氮对粉绿狐尾藻抗氧化系统的影响研究[J]. 生物化工, 2018, 4(3): 65-68.
[22]YANG Z C, WANG Q, ZHANG J, et al. Effect of plant harvesting on the performance of constructed wetlands during summer[J]. Water, 2016, 8(1): 1-10.
[23]BEZBARUAH A N, ZHANG T C. Quantification of oxygen release by bulrush (Scirpus validus) roots in a constructed treatment wetland[J]. Biotechnology and Bioengineering, 2005, 89(3): 308-318.
[24]王文林,王国祥,万寅婧,等. 光照和生长阶段对菖蒲根系泌氧的影响[J]. 生态学报, 2013, 33(12): 3688-3696.
[25]张权,杨柳燕,高燕,等. 湿生植物根系泌氧能力与其结构相关性研究[J]. 水资源保护, 2016, 32(4): 117-122.
[26]马涛,易能,张振华,等. 凤眼莲根系分泌氧和有机碳规律及其对水体氮转化影响的研究[J].农业环境科学学报, 2014, 33(10): 2003-2013.
[27]WANG Q, CAO Z, HU Y, et al. Season effects on subsurface constructed wetlands performance: role of radial oxygen loss of Phragmites australis[J]. Clean-Soil, Air, Water, 2019,47(8):1800428.
[28]LI Y, WANG X. Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and nitrification of two rice cultivars in Chinese red soil regions[J]. Plant and Soil, 2013, 365: 115-126.
[29]余红兵,杨知建,肖润林,等. 水生植物的氮磷吸收能力及收割管理研究[J]. 草业学报, 2013, 22(1): 294-299.
[30]QIAN L W, DUAN H, YAN J F, et al. Can multiple harvests of plants improve nitrogen removal from the point-bar soil of lake?[J]. Journal of Environmental Management, 2019, 249: 109371.

备注/Memo

备注/Memo:
收稿日期:2020-03-18基金项目:国家自然科学基金项目(41701566);湖南省自然科学基金项目(2019JJ50705);中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC041)作者简介:黄鑫星(1996-),男,湖南汨罗人,硕士研究生,主要从事土壤环境与农业生态研究。(E-mail)455247296@qq.com通讯作者:罗沛,(E-mail)luopei@isa.ac.cn
更新日期/Last Update: 2020-11-16